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1.9 Exercises

1. Evaluate the following functions:

a.

b.

c.

d.

e.

f.

2.

a. Express the voltage waveform  shown in Figure 1.24, as a sum of unit step functions for
the time interval .

b. Using the result of part (a), compute the derivative of , and sketch its waveform.

Figure 1.24. Waveform for Exercise 2
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2.6 Exercises

1. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

2. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

3. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.  Be careful with this! Comment and skip derivation.

4. Find the Laplace transform of the following time domain functions:

a.

b.

c.

12
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d.

e.

5. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

6. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.

e.

7. Find the Laplace transform of the following time domain functions:

a.

b.

c.

d.
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e.

8. Find the Laplace transform for the sawtooth waveform of Figure 2.8.

Figure 2.8. Waveform for Exercise 8.

9. Find the Laplace transform for the full rectification waveform  of Figure 2.9.

Figure 2.9. Waveform for Exercise 9
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3.6 Exercises

1. Find the Inverse Laplace transform of the following:

a.

b.

c.

d.

e.

2. Find the Inverse Laplace transform of the following:

a.

b.

c.

d.

e.

3. Find the Inverse Laplace transform of the following:

a.

b.   (See hint on next page)
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Hint: 

c.

d.

e.

4. Use the Initial Value Theorem to find  given that the Laplace transform of  is

Compare your answer with that of Exercise 3(c).

5. It is known that the Laplace transform  has two distinct poles, one at , the other at
. It also has a single zero at , and we know that . Find  and .
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4.6 Exercises

1. In the circuit of Figure 4.22, switch  has been closed for a long time, and opens at . Use
the Laplace transform method to compute  for .

Figure 4.22. Circuit for Exercise 1

2. In the circuit of Figure 4.23, switch  has been closed for a long time, and opens at . Use
the Laplace transform method to compute  for .

Figure 4.23. Circuit for Exercise 2

3. Use mesh analysis and the Laplace transform method, to compute  and  for the circuit

of Figure 4.24, given that  and .

Figure 4.24. Circuit for Exercise 3
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4. For the  circuit of Figure 4.25,

a. compute the admittance 

b. compute the  value of  when , and all initial conditions are zero.

Figure 4.25. Circuit for Exercise 4

5. Derive the transfer functions for the networks (a) and (b) of Figure 4.26.

Figure 4.26. Networks for Exercise 5

6. Derive the transfer functions for the networks (a) and (b) of Figure 4.27.

Figure 4.27. Networks for Exercise 6

7. Derive the transfer functions for the networks (a) and (b) of Figure 4.28.
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Figure 4.28. Networks for Exercise 7

8. Derive the transfer function for the networks (a) and (b) of Figure 4.29.

Figure 4.29. Networks for Exercise 8

9. Derive the transfer function for the network of Figure 4.30. Using MATLAB, plot  versus
frequency in Hertz, on a semilog scale.

Figure 4.30. Network for Exercise 9
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6.7 Exercises

1. Compute the impulse response  in terms of  and  for the circuit of Figure 6.36.

Then, compute the voltage  across the inductor.

Figure 6.36. Circuit for Exercise 1

2.  Repeat Example 6.4 by forming  instead of , that is, use the convolution integral

3. Repeat Example 6.5 by forming  instead of .

4. Compute  given that

         

5. For the series  circuit shown in Figure 6.37, the response is the current . Use the convolu-
tion integral to find the response when the input is the unit step .

Figure 6.37. Circuit for Exercise 5

6. Compute  for the network of Figure 6.38 using the convolution integral, given that
.

h t( ) iL t( )= R L

vL t( )

+−

R

L

iL t( )

δ t( )

h t τ–( ) u t τ–( )

u τ( )h t τ–( ) τd
∞–

∞

∫
h t τ–( ) u t τ–( )

v1 t( )*v2 t( )

v1 t( )
4t t 0≥
0 t 0<⎩

⎨
⎧

= v2 t( ) e 2t– t 0≥
0 t 0<⎩

⎨
⎧

=

RL iL t( )

u0 t( )

+- 1 H

R

iL t( )

u0 t( )

L

1 Ω

i t( )

vout t( )

vin t( ) u0 t( ) u0 t 1–( )–=



Signals and Systems with MATLAB Applications, Second Edition 6-23
Orchard Publications

Exercises

Figure 6.38. Network for Exercise 6

7. Compute  for the circuit of Figure 6.39 given that .

Figure 6.39. Network for Exercise 7

Hint: Use the result of Exercise 6.
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7.14 Exercises

1. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure
7.47. Assume .

Figure 7.47. Waveform for Exercise 1

2. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure
7.48. Assume .

Figure 7.48. Waveform for Exercise 2

3. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
7.49. Assume .

Figure 7.49. Waveform for Exercise 3

4. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
7.50. Assume . 

Figure 7.50. Waveform for Exercise 4
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5. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
7.51. Assume .

Figure 7.51. Waveform for Exercise 5

6. Compute the first 5 components of the exponential Fourier series for the waveform of Figure
7.52. Assume .

Figure 7.52. Waveform for Exercise 6
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8.10 Exercises

1. Show that

2. Compute

3. Sketch the time and frequency waveforms of

4. Derive the Fourier transform of

5. Derive the Fourier transform of

6. Derive the Fourier transform of 

7. For the circuit of Figure 8.21, use the Fourier transform method to compute .

Figure 8.21. Circuit for Exercise 7

8. The input-output relationship in a certain network is

Use the Fourier transform method to compute  given that .
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9. In a bandpass filter, the lower and upper cutoff frequencies are , and  respec-
tively. Compute the  energy of the input, and the percentage that appears at the output, if the

input signal is  volts.

10. In Example 8.4, we derived the Fourier transform pair

Figure 8.22. Figure for Exercise 10

Compute the percentage of the  energy of  contained in the interval  of
.
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9.10 Exercises

1. Find the Z transform of the discrete time pulse  defined as

2. Find the Z transform of  where  is defined as in Exercise 1.

3. Prove the following Z transform pairs:

a.

b.

c.

d.

e.

4. Use the partial fraction expansion to find  given that

5. Use the partial fraction expansion method to compute the Inverse Z transform of

6. Use the Inversion Integral to compute the Inverse Z transform of

7. Use the long division method to compute the first 5 terms of the discrete time sequence whose Z
transform is

p n[ ]

p n[ ]
1    n 0 1 2 … m 1–, , , ,=

0                     otherwise⎩
⎨
⎧

=

anp n[ ] p n[ ]

δ n[ ] 1⇔

δ n 1–[ ] z m–⇔

nanu0 n[ ] az
z a–( )2

------------------⇔

n2anu0 n[ ] az z a+( )

z a–( )3
----------------------⇔

n 1+[ ]u0 n[ ] z2

z 1–( )2
------------------⇔

f n[ ] Z
1– F z( )[ ]=

F z( ) A
1 z 1––( ) 1 0.5z 1––( )

--------------------------------------------------=

F z( ) z2

z 1+( ) z 0.75–( )2
-------------------------------------------=

F z( ) 1 2z 1– z 3–+ +

1 z 1––( ) 1 0.5z 1––( )
--------------------------------------------------=

F z( ) z 1– z 2– z 3––+

1 z 1– z 2– 4z 3–+ + +
----------------------------------------------=
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8. a. Compute the transfer function of the difference equation

b. Compute the response  when the input is 

9. Given the difference equation

a. Compute the discrete transfer function 

b. Compute the response to the input 

10. A discrete time system is described by the difference equation

where

a. Compute the transfer function 

b. Compute the impulse response 

c. Compute the response when the input is 

11. Given the discrete transfer function

write the difference equation that relates the output  to the input .

y n[ ] y n 1–[ ]– Tx n 1–[ ]=

y n[ ] x n[ ] e naT–=

y n[ ] y n 1–[ ]–
T
2
--- x n[ ] x n 1–[ ]+{ }=

H z( )

x n[ ] e naT–=

y n[ ] y n 1–[ ]+ x n[ ]=

y n[ ] 0  for  n 0<=

H z( )

h n[ ]

x n[ ] 10  for  n 0≥=

H z( ) z 2+

8z2 2z– 3–
----------------------------=

y n[ ] x n[ ]
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10.8  Exercises

1. Compute the DFT of the sequence ,  

2. A square waveform is represented by the discrete time sequence

 and 

Use MATLAB to compute and plot the magnitude  of this sequence.

3.  Prove that

     a.  

     b.  

4. The signal flow graph of Figure 10.6 is a decimation in time, natural-input, shuffled-output type
FFT algorithm. Using this graph and relation (10.69), compute the frequency component .
Verify that this is the same as that found in Example 10.5.

Figure 10.6. Signal flow graph for Exercise 4

5. The signal flow graph of Figure 10.7 is a decimation in frequency, natural input, shuffled output
type FFT algorithm. There are two equations that relate successive columns. The first is

and it is used with the nodes where two dashed lines terminate on them.
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The second equation is

and it is used with the nodes where two solid lines terminate on them. The number inside the cir-
cles denote the power of , and the minus (−) sign below serves as a reminder that the brack-
eted term of the second equation involves a subtraction. Using this graph and the above equa-
tions, compute the frequency component . Verify that this is the same as in Example 10.5.

Figure 10.7. Signal flow graph for Exercise 5
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11.10 Exercises

1. The circuit of Figure 11.39 is a VCVS second-order high-pass filter whose transfer function is

and for given values of , , and desired cutoff frequency , we can calculate the values of
 to achieve the desired cutoff frequency . 

Figure 11.39. Circuit for Exercise 1

For this circuit,

and the gain  is

Using these relations, compute the appropriate values of the resistors to achieve the cutoff fre-
quency . Choose the capacitors as  and . Plot  versus
frequency.

Solution using MATLAB is highly recommended.
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2. The circuit of Figure 11.40 is a VCVS second-order band-pass filter whose transfer function is

 

Figure 11.40. Circuit for Exercise 2

Let , , ,
, and 

We can calculate the values of  to achieve the desired centered frequency
 and bandwidth . For this circuit,

Using these relations, compute the appropriate values of the resistors to achieve center frequency
, , and .

Choose the capacitors as . Plot  versus frequency.

Solution using MATLAB is highly recommended.
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3. The circuit of Figure 11.41 is a  second-order band elimination filter whose transfer func-
tion is

Figure 11.41. Circuit for Exercise 3

Let , , ,
, , and gain 

We can calculate the values of  to achieve the desired centered fre-
quency  and bandwidth . For this circuit,

The gain  must be unity, but  can be up to 10. Using these relations, compute the appropriate
values of the resistors to achieve center frequency ,  and .

Choose the capacitors as  and . Plot  versus frequency.

Solution using MATLAB is highly recommended.
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C1 C2 0.1 µF= = C3 2C1= G s( )
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4. The circuit of Figure 11.42 is a MFB second-order all-pass filter whose transfer function is

where the gain , , and the phase is given by

Figure 11.42. Circuit for Exercise 4

The coefficients  and  can be found from

For arbitrary values of , we can compute the resistances from 

For , we compute the coefficient  from

G s( )
Vout s( )
Vin s( )
-----------------

K s2 aω0s– bω0
2+( )

s2 aω0s bω0
2+ +

----------------------------------------------= =

K cons ttan= 0 K 1< <( )

φ ω( ) 2tan 1– aω0ω

bω0
2 ω2–

----------------------⎝ ⎠
⎛ ⎞–=

vin vout

C1

C2

R1
R2

R4

R3

a b

φ0 φ ω0( ) 2tan 1– a
b 1–
------------⎝ ⎠

⎛ ⎞–= =

C1 C2=

R2
2

aω0C1
----------------=

R1
1 K–( )R2

4K
------------------------=

R3
R2

K
-----    =

R4
R2

1 K–
-------------    =

0 φ0 180°< < a

a 1 K–
2K φ0 2⁄( )tan
--------------------------------- 1– 1 4K

1 K–
------------- tan2 φ0 2⁄( )⋅++=
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and for , from

Using these relations, compute the appropriate values of the resistors to achieve a phase shift
 at  with .

Choose the capacitors as  and plot phase versus frequency.

Solution using MATLAB is highly recommended.

5. The Bessel filter of Figure 11.43 has the same configuration as the low-pass filter of Example
11.3, and achieves a relatively constant time delay over a range . The second-order
transfer function of this filter is 

Figure 11.43. Circuit for Exercise 5

where  is the gain and the time delay  at  is given as

We recognize the transfer function  above as that of a low-pass filter where 
and the substitution of . Therefore, we can use a low-pass filter circuit such as that of
Figure 11.43, to achieve a constant delay  by specifying the resistor and capacitor values of the
circuit.

The resistor values are computed from

180°– φ0 0°< <

a 1 K–
2K φ0 2⁄( )tan
--------------------------------- 1– 1 4K

1 K–
------------- tan2 φ0 2⁄( )⋅+–=

φ0 90°–= f0 1 KHz=  K 0.75=

C1 C2 0.01 µF= =

0 ω ω0< <

G s( )
Vout s( )
Vin s( )
----------------- 3Kω0

2

s2 3ω0s 3ω0
2+ +

---------------------------------------= =

vin vout
C1

C2R2

R1 R3

K T0 ω0 2πf0=

T0 T ω0( ) 12
13ω0
------------ ondssec= =

G s( ) a b 3= =

ω0 ωC=

T0
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Using these relations, compute the appropriate values of the resistors to achieve a time delay
 with . Use capacitors  and . Plot  versus

frequency.

Solution using MATLAB is highly recommended.

6. Derive the transfer function of a fourth-order Butterworth filter with .

7. Derive the amplitude-squared function for a third-order Type I Chebyshev low-pass filter with
 pass band ripple and cutoff frequency .

8. Use MATLAB to derive the transfer function  and plot  versus  for a two-pole, Type
I Chebyshev high-pass digital filter with sampling period . The equivalent analog filter
cutoff frequency is  and has  pass band ripple. Compute the coefficients of
the numerator and denominator and plot  with and without pre-warping.

R2
2 K 1+( )

aC1 a2C1
2 4– bC1C2 K 1–( )+( )ω0

------------------------------------------------------------------------------------=

R1
R2

K
-----=

R3
1

bC1C2R2ω0
2

-----------------------------=

T0 100 µs= K 2= C1 0.01 µF= C2 0.002 µF= G s( )

ωC 1 rad s⁄=

1.5 dB ωC 1 rad s⁄=

G z( ) G z( ) ω
TS 0.25 s=

ωC 4 rad s⁄= 3 dB

G z( )


