Chapter 1 Elementary Signals

1.9 Exercises

- 1. Evaluate the following functions:
- a. $sint\delta\left(t-\frac{\pi}{6}\right)$
- b. $\cos 2t\delta \left(t \frac{\pi}{4}\right)$
- c. $\cos^2 t \delta \left(t \frac{\pi}{2} \right)$
- d. $\tan 2t\delta \left(t \frac{\pi}{8}\right)$
- e. $\int_{-\infty}^{\infty} t^2 e^{-t} \delta(t-2) dt$
- f. $\sin^2 t \delta^1 \left(t \frac{\pi}{2} \right)$

2.

- a. Express the voltage waveform v(t) shown in Figure 1.24, as a sum of unit step functions for the time interval 0 < t < 7 s.
- b. Using the result of part (a), compute the derivative of v(t), and sketch its waveform.

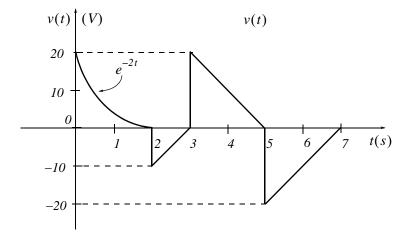


Figure 1.24. Waveform for Exercise 2

Chapter 2 The Laplace Transformation

2.6 Exercises

- 1. Find the Laplace transform of the following time domain functions:
 - a. 12
 - b. $6u_0(t)$
 - c. $24u_0(t-12)$
 - d. $5tu_0(t)$
 - e. $4t^5 u_0(t)$
- 2. Find the Laplace transform of the following time domain functions:
 - a. *j*8
 - b. *j5∠*–90°
 - c. $5e^{-5t}u_0(t)$
 - d. $8t^7 e^{-5t} u_0(t)$
 - e. $15\delta(t-4)$
- 3. Find the Laplace transform of the following time domain functions:
 - a. $(t^3 + 3t^2 + 4t + 3)u_0(t)$
 - b. $3(2t-3)\delta(t-3)$
 - c. $(3\sin 5t)u_0(t)$
 - d. $(5\cos 3t)u_0(t)$
 - e. $(2\tan 4t)u_0(t)$ Be careful with this! Comment and skip derivation.
- 4. Find the Laplace transform of the following time domain functions:
 - a. $3t(\sin 5t)u_0(t)$
 - b. $2t^2(\cos 3t)u_0(t)$
 - c. $2e^{-5t}\sin 5t$

d.
$$8e^{-3t}\cos 4t$$

e.
$$(\cos t)\delta(t-\pi/4)$$

5. Find the Laplace transform of the following time domain functions:

a.
$$5tu_0(t-3)$$

b.
$$(2t^2 - 5t + 4)u_0(t - 3)$$

c.
$$(t-3)e^{-2t}u_0(t-2)$$

d.
$$(2t-4)e^{2(t-2)}u_0(t-3)$$

e.
$$4te^{-3t}(\cos 2t)u_0(t)$$

6. Find the Laplace transform of the following time domain functions:

a.
$$\frac{d}{dt}(\sin 3t)$$

b.
$$\frac{d}{dt}(3e^{-4t})$$

c.
$$\frac{d}{dt}(t^2\cos 2t)$$

d.
$$\frac{d}{dt}(e^{-2t}\sin 2t)$$

e.
$$\frac{d}{dt}(t^2e^{-2t})$$

7. Find the Laplace transform of the following time domain functions:

a.
$$\frac{\sin t}{t}$$

b.
$$\int_{0}^{t} \frac{\sin \tau}{\tau} d\tau$$

c.
$$\frac{\sin at}{t}$$

d.
$$\int_{t}^{\infty} \frac{\cos \tau}{\tau} d\tau$$

Chapter 2 The Laplace Transformation

e.
$$\int_{t}^{\infty} \frac{e^{-\tau}}{\tau} d\tau$$

8. Find the Laplace transform for the sawtooth waveform $f_{ST}(t)$ of Figure 2.8.

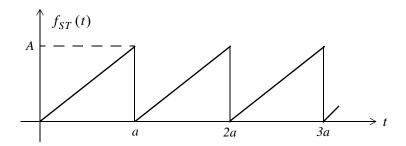


Figure 2.8. Waveform for Exercise 8.

9. Find the Laplace transform for the full rectification waveform $f_{FR}(t)$ of Figure 2.9.

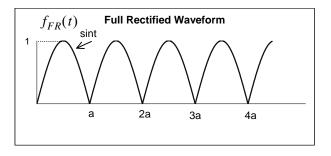


Figure 2.9. Waveform for Exercise 9

Chapter 3 The Inverse Laplace Transformation

3.6 Exercises

- 1. Find the Inverse Laplace transform of the following:
 - a. $\frac{4}{s+3}$
 - b. $\frac{4}{(s+3)^2}$
 - c. $\frac{4}{(s+3)^4}$
 - d. $\frac{3s+4}{(s+3)^5}$
 - e. $\frac{s^2 + 6s + 3}{(s+3)^5}$
- 2. Find the Inverse Laplace transform of the following:
 - a. $\frac{3s+4}{s^2+4s+85}$
 - b. $\frac{4s+5}{s^2+5s+18.5}$
 - c. $\frac{s^2 + 3s + 2}{s^3 + 5s^2 + 10.5s + 9}$
 - d. $\frac{s^2 16}{s^3 + 8s^2 + 24s + 32}$
 - e. $\frac{s+1}{s^3+6s^2+11s+6}$
- 3. Find the Inverse Laplace transform of the following:
 - a. $\frac{3s+2}{s^2+25}$
 - b. $\frac{5s^2 + 3}{(s^2 + 4)^2}$ (See hint on next page)

Hint:
$$\begin{cases} \frac{1}{2\alpha}(\sin\alpha t + \alpha t \cos\alpha t) \Leftrightarrow \frac{s^2}{(s^2 + \alpha^2)^2} \\ \frac{1}{2\alpha^3}(\sin\alpha t - \alpha t \cos\alpha t) \Leftrightarrow \frac{1}{(s^2 + \alpha^2)^2} \end{cases}$$

c.
$$\frac{2s+3}{s^2+4.25s+1}$$

d.
$$\frac{s^3 + 8s^2 + 24s + 32}{s^2 + 6s + 8}$$

e.
$$e^{-2s} \frac{3}{(2s+3)^3}$$

4. Use the Initial Value Theorem to find f(0) given that the Laplace transform of f(t) is

$$\frac{2s+3}{s^2+4.25s+1}$$

Compare your answer with that of Exercise 3(c).

5. It is known that the Laplace transform F(s) has two distinct poles, one at s = 0, the other at s = -1. It also has a single zero at s = 1, and we know that $\lim_{t \to \infty} f(t) = 10$. Find F(s) and f(t).

Chapter 4 Circuit Analysis with Laplace Transforms

4.6 Exercises

1. In the circuit of Figure 4.22, switch S has been closed for a long time, and opens at t = 0. Use the Laplace transform method to compute $i_L(t)$ for t > 0.

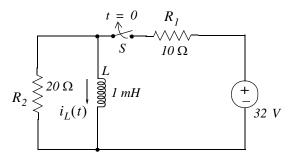


Figure 4.22. Circuit for Exercise 1

2. In the circuit of Figure 4.23, switch S has been closed for a long time, and opens at t = 0. Use the Laplace transform method to compute $v_c(t)$ for t > 0.

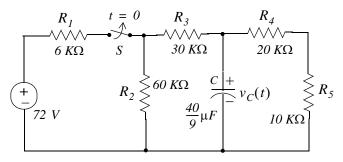


Figure 4.23. Circuit for Exercise 2

3. Use mesh analysis and the Laplace transform method, to compute $i_1(t)$ and $i_2(t)$ for the circuit of Figure 4.24, given that $i_L(0^-) = 0$ and $v_c(0^-) = 0$.

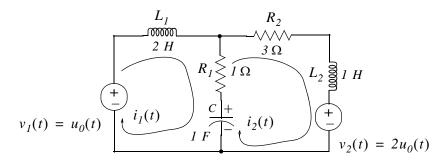


Figure 4.24. Circuit for Exercise 3

- 4. For the s domain circuit of Figure 4.25,
 - a. compute the admittance $Y(s) = I_1(s)/V_1(s)$
 - b. compute the t domain value of $i_1(t)$ when $v_1(t) = u_0(t)$, and all initial conditions are zero.

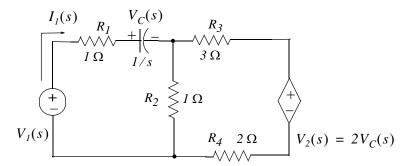


Figure 4.25. Circuit for Exercise 4

5. Derive the transfer functions for the networks (a) and (b) of Figure 4.26.

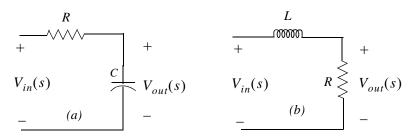


Figure 4.26. Networks for Exercise 5

6. Derive the transfer functions for the networks (a) and (b) of Figure 4.27.

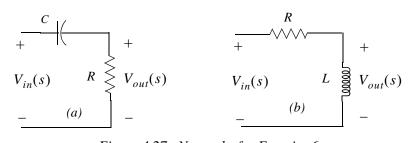


Figure 4.27. Networks for Exercise 6

7. Derive the transfer functions for the networks (a) and (b) of Figure 4.28.

Chapter 4 Circuit Analysis with Laplace Transforms

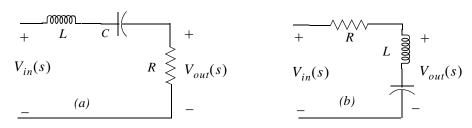


Figure 4.28. Networks for Exercise 7

8. Derive the transfer function for the networks (a) and (b) of Figure 4.29.

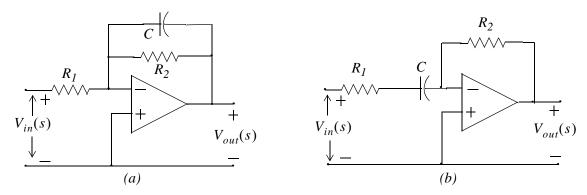


Figure 4.29. Networks for Exercise 8

9. Derive the transfer function for the network of Figure 4.30. Using MATLAB, plot |G(s)| versus frequency in Hertz, on a semilog scale.

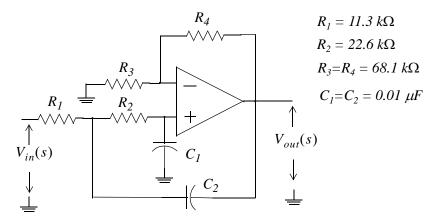


Figure 4.30. Network for Exercise 9

Chapter 6 The Impulse Response and Convolution

6.7 Exercises

1. Compute the impulse response $h(t) = i_L(t)$ in terms of R and L for the circuit of Figure 6.36. Then, compute the voltage $v_L(t)$ across the inductor.

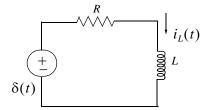


Figure 6.36. Circuit for Exercise 1

2. Repeat Example 6.4 by forming $h(t-\tau)$ instead of $u(t-\tau)$, that is, use the convolution integral

$$\int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau$$

- 3. Repeat Example 6.5 by forming $h(t-\tau)$ instead of $u(t-\tau)$.
- 4. Compute $v_1(t)*v_2(t)$ given that

$$v_{I}(t) = \begin{cases} 4t & t \ge 0 \\ 0 & t < 0 \end{cases} \qquad v_{2}(t) = \begin{cases} e^{-2t} & t \ge 0 \\ 0 & t < 0 \end{cases}$$

5. For the series RL circuit shown in Figure 6.37, the response is the current $i_L(t)$. Use the convolution integral to find the response when the input is the unit step $u_0(t)$.

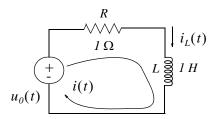


Figure 6.37. Circuit for Exercise 5

6. Compute $v_{out}(t)$ for the network of Figure 6.38 using the convolution integral, given that $v_{in}(t) = u_0(t) - u_0(t-1)$.

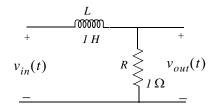


Figure 6.38. Network for Exercise 6

7. Compute $v_{out}(t)$ for the circuit of Figure 6.39 given that $v_{in}(t) = u_0(t) - u_0(t-1)$.

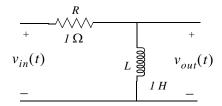


Figure 6.39. Network for Exercise 7

Hint: Use the result of Exercise 6.

7.14 Exercises

1. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure 7.47. Assume $\omega = 1$.

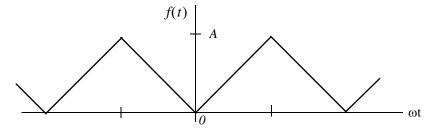


Figure 7.47. Waveform for Exercise 1

2. Compute the first 5 components of the trigonometric Fourier series for the waveform of Figure 7.48. Assume $\omega = 1$.

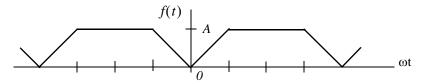


Figure 7.48. Waveform for Exercise 2

3. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 7.49. Assume $\omega = 1$.

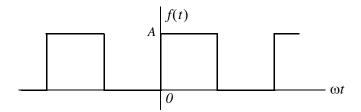


Figure 7.49. Waveform for Exercise 3

4. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 7.50. Assume $\omega = 1$.

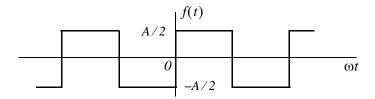


Figure 7.50. Waveform for Exercise 4

Chapter 7 Fourier Series

5. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 7.51. Assume $\omega = 1$.

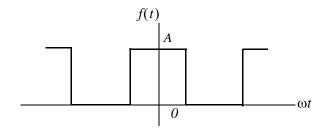


Figure 7.51. Waveform for Exercise 5

6. Compute the first 5 components of the exponential Fourier series for the waveform of Figure 7.52. Assume $\omega = 1$.

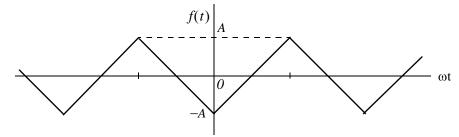


Figure 7.52. Waveform for Exercise 6

8.10 Exercises

1. Show that

$$\int_{-\infty}^{\infty} u_0(t)\delta(t)dt = 1/2$$

2. Compute

$$\mathcal{F}\left\{te^{-at}u_0(t)\right\} \ a>0$$

3. Sketch the time and frequency waveforms of

$$f(t) = \cos \omega_0 t [u_0(t+T) - u_0(t-T)]$$

4. Derive the Fourier transform of

$$f(t) = A[u_0(t+3T) - u_0(t+T) + u_0(t-T) - u_0(t-3T)]$$

5. Derive the Fourier transform of

$$f(t) = \frac{A}{T}t[u_0(t+T)-u_0(t-T)]$$

6. Derive the Fourier transform of

$$f(t) = \left(\frac{A}{T}t + A\right)\left[u_0(t+T) - u_0(t)\right] + \left(-\frac{A}{T}t + A\right)\left[u_0(t) - u_0\left(t - \frac{T}{2}\right)\right]$$

7. For the circuit of Figure 8.21, use the Fourier transform method to compute $v_C(t)$.

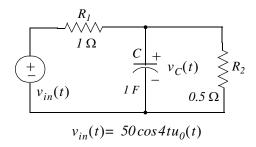


Figure 8.21. Circuit for Exercise 7

8. The input-output relationship in a certain network is

$$\frac{d^2}{dt^2} v_{out}(t) + 5 \frac{d}{dt} v_{out}(t) + 6 v_{out}(t) = 10 v_{in}(t)$$

Use the Fourier transform method to compute $v_{out}(t)$ given that $v_{in}(t) = 2e^{-t}u_0(t)$.

Chapter 8 The Fourier Transform

- 9. In a bandpass filter, the lower and upper cutoff frequencies are $f_1 = 2 \, Hz$, and $f_2 = 6 \, Hz$ respectively. Compute the $I \, \Omega$ energy of the input, and the percentage that appears at the output, if the input signal is $v_{in}(t) = 3e^{-2t}u_0(t)$ volts.
- 10. In Example 8.4, we derived the Fourier transform pair

$$A[u_0(t+T) - u_0(t-T)] \Leftrightarrow 2AT \frac{\sin \omega T}{\omega T}$$

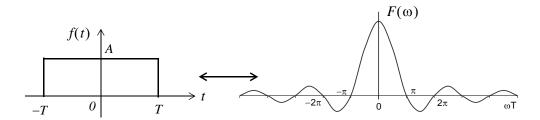


Figure 8.22. Figure for Exercise 10

Compute the percentage of the I Ω energy of f(t) contained in the interval $-\pi/T \le \omega \le \pi/T$ of $F(\omega)$.

Chapter 9 Discrete Time Systems and the Z Transform

9.10 Exercises

1. Find the \mathbb{Z} transform of the discrete time pulse p[n] defined as

$$p[n] = \begin{cases} 1 & n = 0, 1, 2, ..., m-1 \\ 0 & otherwise \end{cases}$$

- 2. Find the \mathbb{Z} transform of $a^n p[n]$ where p[n] is defined as in Exercise 1.
- 3. Prove the following \mathbb{Z} transform pairs:
 - a. $\delta[n] \Leftrightarrow I$
 - b. $\delta[n-1] \Leftrightarrow z^{-m}$
 - c. $na^n u_0[n] \Leftrightarrow \frac{az}{(z-a)^2}$
 - d. $n^2 a^n u_0[n] \Leftrightarrow \frac{az(z+a)}{(z-a)^3}$
 - e. $[n+1]u_0[n] \Leftrightarrow \frac{z^2}{(z-1)^2}$
- 4. Use the partial fraction expansion to find $f[n] = \mathbb{Z}^{-1}[F(z)]$ given that

$$F(z) = \frac{A}{(1 - z^{-1})(1 - 0.5z^{-1})}$$

5. Use the partial fraction expansion method to compute the Inverse $\mathcal Z$ transform of

$$F(z) = \frac{z^2}{(z+1)(z-0.75)^2}$$

6. Use the Inversion Integral to compute the Inverse $\mathcal Z$ transform of

$$F(z) = \frac{1 + 2z^{-1} + z^{-3}}{(1 - z^{-1})(1 - 0.5z^{-1})}$$

7. Use the long division method to compute the first 5 terms of the discrete time sequence whose \mathbb{Z} transform is

$$F(z) = \frac{z^{-1} + z^{-2} - z^{-3}}{1 + z^{-1} + z^{-2} + 4z^{-3}}$$

8. a. Compute the transfer function of the difference equation

$$y[n] - y[n-1] = Tx[n-1]$$

- b. Compute the response y[n] when the input is $x[n] = e^{-naT}$
- 9. Given the difference equation

$$y[n] - y[n-1] = \frac{T}{2} \{x[n] + x[n-1]\}$$

- a. Compute the discrete transfer function H(z)
- b. Compute the response to the input $x[n] = e^{-naT}$
- 10. A discrete time system is described by the difference equation

$$y[n] + y[n-1] = x[n]$$

where

$$y[n] = 0$$
 for $n < 0$

- a. Compute the transfer function H(z)
- b. Compute the impulse response h[n]
- c. Compute the response when the input is x[n] = 10 for $n \ge 0$
- 11. Given the discrete transfer function

$$H(z) = \frac{z+2}{8z^2 - 2z - 3}$$

write the difference equation that relates the output y[n] to the input x[n].

10.8 Exercises

- 1. Compute the DFT of the sequence x[0] = x[1] = 1, x[2] = x[3] = -1
- 2. A square waveform is represented by the discrete time sequence

$$x[0] = x[1] = x[2] = x[3] = 1$$
 and $x[4] = x[5] = x[6] = x[7] = -1$

Use MATLAB to compute and plot the magnitude [X[m]] of this sequence.

3. Prove that

a.
$$x[n]\cos\frac{2\pi kn}{N} \Leftrightarrow \frac{1}{2}\{X[m-k] + X[m+k]\}$$

b.
$$x[n] sin \frac{2\pi kn}{N} \Leftrightarrow \frac{1}{i2} \{X[m-k] + X[m+k]\}$$

4. The signal flow graph of Figure 10.6 is a decimation in time, natural-input, shuffled-output type FFT algorithm. Using this graph and relation (10.69), compute the frequency component X[3]. Verify that this is the same as that found in Example 10.5.

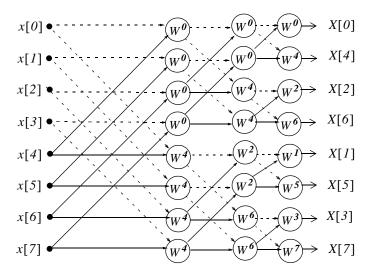


Figure 10.6. Signal flow graph for Exercise 4

5. The signal flow graph of Figure 10.7 is a decimation in frequency, natural input, shuffled output type *FFT* algorithm. There are two equations that relate successive columns. The first is

$$Y_{dash}(R,C) = Y_{dash}(R_i, C-1) + Y_{dash}(R_j, C-1)$$

and it is used with the nodes where two dashed lines terminate on them.

Chapter 10 The DFT and the FFT Algorithm

The second equation is

$$Y_{sol}(R, C) = W^{m}[Y_{sol}(R_{i}, C-1) - Y_{sol}(R_{j}, C-1)]$$

and it is used with the nodes where two solid lines terminate on them. The number inside the circles denote the power of W_N , and the minus (–) sign below serves as a reminder that the bracketed term of the second equation involves a subtraction. Using this graph and the above equations, compute the frequency component X[3]. Verify that this is the same as in Example 10.5.

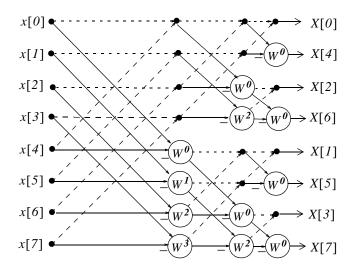


Figure 10.7. Signal flow graph for Exercise 5

11.10 Exercises

1. The circuit of Figure 11.39 is a VCVS second-order high-pass filter whose transfer function is

$$G(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{Ks^2}{s^2 + (a/b)\omega_c s + (1/b)\omega_c^2}$$

and for given values of a, b, and desired cutoff frequency ω_c , we can calculate the values of C_1 , C_2 , R_1 , R_2 , R_3 , and R_4 to achieve the desired cutoff frequency ω_c .

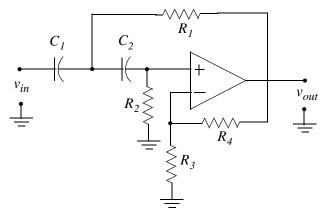


Figure 11.39. Circuit for Exercise 1

For this circuit,

$$R_{2} = \frac{4b}{C_{I} \left\{ a + \left[\sqrt{a^{2} + 8b(K - I)} \right] \right\} \omega_{C}}$$

$$R_{I} = \frac{b}{C_{I}^{2} R_{2} \omega_{C}^{2}}$$

$$R_{3} = \frac{KR_{2}}{K - I}, \quad K \neq I$$

$$R_{4} = KR_{2}$$

and the gain K is

$$K = 1 + R_4/R_3$$

Using these relations, compute the appropriate values of the resistors to achieve the cutoff frequency $f_C = 1 \text{ KHz}$. Choose the capacitors as $C_1 = 10/f_C \mu F$ and $C_2 = C_I$. Plot |G(s)| versus frequency.

Solution using MATLAB is highly recommended.

Chapter 11 Analog and Digital Filters

2. The circuit of Figure 11.40 is a VCVS second-order band-pass filter whose transfer function is

$$G(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{K[BW]s}{s^2 + [BW]s + \omega_0^2}$$

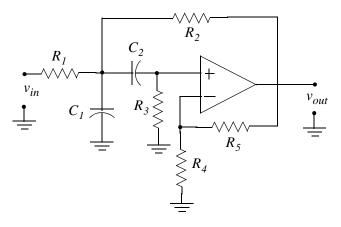


Figure 11.40. Circuit for Exercise 2

Let $\omega_0 = center frequency$, $\omega_2 = upper cutoff frequency$, $\omega_1 = lower cutoff frequency$, $Bandwidth BW = \omega_2 - \omega_1$, and $Quality Factor Q = \omega_0/BW$

We can calculate the values of C_1 , C_2 , R_1 , R_2 , R_3 , and R_4 to achieve the desired centered frequency ω_0 and bandwidth BW. For this circuit,

$$R_{1} = \frac{2Q}{C_{1}\omega_{0}K}$$

$$R_{2} = \frac{2Q}{C_{1}\omega_{0}\left\{-1 + \sqrt{(K-1)^{2} + 8Q^{2}}\right\}}$$

$$R_{3} = \frac{1}{C_{1}^{2}\omega_{0}^{2}}\left(\frac{1}{R_{1}} + \frac{1}{R_{2}}\right)$$

$$R_{4} = R_{5} = 2R_{3}$$

Using these relations, compute the appropriate values of the resistors to achieve center frequency $f_0 = 1 \text{ KHz}$, Gain K = 10, and Q = 10.

Choose the capacitors as $C_1 = C_2 = 0.1 \, \mu F$. Plot |G(s)| versus frequency.

Solution using MATLAB is highly recommended.

3. The circuit of Figure 11.41 is a *VCVS* second-order band elimination filter whose transfer function is

$$G(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{K(s^2 + \omega_0^2)}{s^2 + [BW]s + \omega_0^2}$$

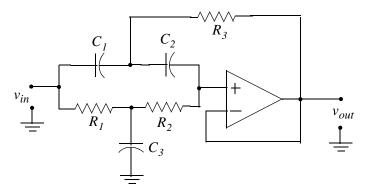


Figure 11.41. Circuit for Exercise 3

Let ω_0 = center frequency, ω_2 = upper cutoff frequency, ω_1 = lower cutoff frequency, Bandwidth $BW = \omega_2 - \omega_1$, Quality Factor $Q = \omega_0/BW$, and gain K = 1

We can calculate the values of C_1 , C_2 , R_1 , R_2 , R_3 , and R_4 to achieve the desired centered frequency ω_0 and bandwidth BW. For this circuit,

$$R_{I} = \frac{1}{2\omega_{0}QC_{I}}$$

$$R_{2} = \frac{2Q}{\omega_{0}C_{I}}$$

$$R_{3} = \frac{2Q}{C_{I}\omega_{0}(4Q^{2} + I)}$$

The gain K must be unity, but Q can be up to 10. Using these relations, compute the appropriate values of the resistors to achieve center frequency $f_0 = 1$ KHz, Gain K = 1 and Q = 10.

Choose the capacitors as $C_1 = C_2 = 0.1 \,\mu F$ and $C_3 = 2C_1$. Plot |G(s)| versus frequency. Solution using MATLAB is highly recommended.

Chapter 11 Analog and Digital Filters

4. The circuit of Figure 11.42 is a MFB second-order all-pass filter whose transfer function is

$$G(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{K(s^2 - a\omega_0 s + b\omega_0^2)}{s^2 + a\omega_0 s + b\omega_0^2}$$

where the gain K = constant, (0 < K < 1), and the phase is given by

$$\phi(\omega) = -2\tan^{-1}\left(\frac{a\omega_0\omega}{b\omega_0^2 - \omega^2}\right)$$

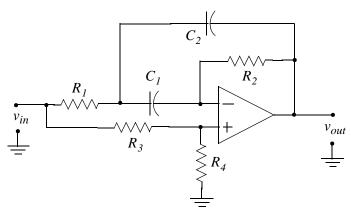


Figure 11.42. Circuit for Exercise 4

The coefficients a and b can be found from

$$\phi_0 = \phi(\omega_0) = -2\tan^{-1}\left(\frac{a}{b-1}\right)$$

For arbitrary values of $C_1 = C_2$, we can compute the resistances from

$$R_2 = \frac{2}{a\omega_0 C_1}$$

$$R_1 = \frac{(1 - K)R_2}{4K}$$

$$R_3 = \frac{R_2}{K}$$

$$R_4 = \frac{R_2}{1 - K}$$

For $0 < \phi_0 < 180^{\circ}$, we compute the coefficient a from

$$a = \frac{1 - K}{2K \tan(\phi_0/2)} \left[-1 + \sqrt{1 + \frac{4K}{1 - K} \cdot \tan^2(\phi_0/2)} \right]$$

and for $-180^{\circ} < \phi_0 < 0^{\circ}$, from

$$a = \frac{1 - K}{2K \tan(\phi_0/2)} \left[-1 - \sqrt{1 + \frac{4K}{1 - K} \cdot \tan^2(\phi_0/2)} \right]$$

Using these relations, compute the appropriate values of the resistors to achieve a phase shift $\phi_0 = -90^\circ$ at $f_0 = 1$ KHz with K = 0.75.

Choose the capacitors as $C_1 = C_2 = 0.01 \,\mu F$ and plot phase versus frequency.

Solution using MATLAB is highly recommended.

5. The *Bessel filter* of Figure 11.43 has the same configuration as the low-pass filter of Example 11.3, and achieves a relatively constant time delay over a range $\theta < \omega < \omega_{\theta}$. The second-order transfer function of this filter is

$$G(s) = \frac{V_{out}(s)}{V_{in}(s)} = \frac{3K\omega_0^2}{s^2 + 3\omega_0 s + 3\omega_0^2}$$

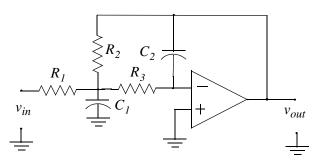


Figure 11.43. Circuit for Exercise 5

where K is the gain and the time delay T_0 at $\omega_0 = 2\pi f_0$ is given as

$$T_0 = T(\omega_0) = \frac{12}{13\omega_0} seconds$$

We recognize the transfer function |G(s)| above as that of a low-pass filter where a = b = 3 and the substitution of $\omega_0 = \omega_C$. Therefore, we can use a low-pass filter circuit such as that of Figure 11.43, to achieve a constant delay T_0 by specifying the resistor and capacitor values of the circuit.

The resistor values are computed from

Chapter 11 Analog and Digital Filters

$$R_{2} = \frac{2(K+1)}{(aC_{1} + \sqrt{a^{2}C_{1}^{2} - 4bC_{1}C_{2}(K-1)})\omega_{0}}$$

$$R_{1} = \frac{R_{2}}{K}$$

$$R_{3} = \frac{1}{bC_{1}C_{2}R_{2}\omega_{0}^{2}}$$

Using these relations, compute the appropriate values of the resistors to achieve a time delay $T_0 = 100 \,\mu s$ with K = 2. Use capacitors $C_1 = 0.01 \,\mu F$ and $C_2 = 0.002 \,\mu F$. Plot |G(s)| versus frequency.

Solution using MATLAB is highly recommended.

- 6. Derive the transfer function of a fourth-order Butterworth filter with $\omega_c = 1 \text{ rad/s}$.
- 7. Derive the amplitude-squared function for a third-order Type I Chebyshev low-pass filter with 1.5 dB pass band ripple and cutoff frequency $\omega_c = 1 \ rad/s$.
- 8. Use MATLAB to derive the transfer function G(z) and plot |G(z)| versus ω for a two-pole, Type I Chebyshev high-pass digital filter with sampling period $T_S = 0.25 \ s$. The equivalent analog filter cutoff frequency is $\omega_C = 4 \ rad/s$ and has $3 \ dB$ pass band ripple. Compute the coefficients of the numerator and denominator and plot |G(z)| with and without pre-warping.