
Detecting Anomaly in Smart homes based on
Mahalanobis Distance

Hoang M. Ngo∗†, Do H. Ha∗, Quan D. Pham∗, Thinh V. Le∗‡, and Son H. Nguyen∗§
∗Faculty of Information Technology, VNU-University of Engineering and Technology, Hanoi 100000, Vietnam

†Department of Computer and Information Science and Engineering, University of Florida, Gainesville, UF 32611, USA
‡Department of Computer Science, Kennesaw State University, Marietta, GA 30060, USA

§Corresponding author: sonnh@vnu.edu.vn

Abstract—The services provided in smart homes depends
heavily on the operation of smart devices which may occasionally
have abnormal behaviours due to hardware-failure or improper
use. Hence, accurate and quick anomaly detection of devices in
smart homes is essential. Due to the explosion of the number of
smart devices in smart homes including sensors and actuators,
a new anomaly detection method which can deal with a large
number of data obtained from smart devices is necessary. Fur-
thermore, the line between normal events and abnormal events is
really sensitive in some cases, an accurate assessment method is
required to reduce the false positive rate in detecting anomaly. In
this paper, we propose an anomaly detection method based on
Mahalanobis distance to completely solve the above problems.
Based on an assumption that complex faults can be detected
when actuators are triggered, we group devices which appear
together frequently by a key actuator, and then calculate the
Mahalanobis distances between states of these frequent groups by
KNN models. We also propose a controlling algorithm to judge
the failing proportion of devices in order to reduce the false
positive rate. The experiment results show that our proposed
methods can achieve high detection rates with low false positive
rates and small detection time. 1

Index Terms—anomaly, smart home, KNN, frequent group.

I. INTRODUCTION

The Internet of Things (IoT) has revolutionized residential
living, leading to the emergence of smart homes, a technolog-
ical evolution that interconnects home appliances and devices
via the Internet, facilitating remote control, automation, and a
heightened level of intelligent living. The movement towards
the automated home began with the advent of Wireless Sensor
Networks (WSN) and Radio frequency identification (RFID)
devices [1]. Concurrently, advancements in material science
and microchip technologies have led to the miniaturization and
amplification of smart device capabilities [2]. These devices
can be very sophisticated Raspberry Pi or a simple sensing
device equipped with an integrated circuit and an antenna
for communication. The extensive range of applications these
devices provide residents includes, but is not limited to, the
control of home appliances and the automation of various
home features, collectively contributing to a more connected
and efficient living environment.

1This research has been done under the research project QG.21.30
“Anomaly detection for IoT devices in smart home environment” of Vietnam
National University, Hanoi.

For recent decades, one-person households (OPH) have
become increasingly common across the world [3]. However,
living alone, particularly for the elderly and individuals with
disabilities, is associated with heightened risks of experiencing
physical and mental health disorders, which can have severe
consequences if not detected in time. Addressing this chal-
lenge necessitates the development of an advanced monitoring
system capable of detecting critical and potentially dangerous
activities such as falls or fainting. Smart home devices play
a crucial role in this context, offering a viable solution to
mitigate these risks. In addition, the failure of smart devices
in smart homes may result in an inconvenient and insecure
living environment. For instance, the failure of a ventilation
machine may exert negative impacts on asthma patients. As
a result, besides detecting abnormal activities of home users,
another duty of the said system is to detect abnormal behaviors
of smart devices in order to replace or fix them in a timely
manner. In general, we will refer to both abnormal activities
of home users and abnormal behaviors of smart devices
collectively as abnormal events.

Along with the population of smart homes, an increasing
amount of research for anomaly detection in smart homes
has been conducted [4], [5], [6]. In [7], the authors used
Bayesian Belief Networks to calculate the probability that a
sensor receives a certain value, through data of nearby sensors
and historical data of the sensor itself. In another study [8],
the sensor network is segmented into defined regions, each
collecting a distribution of multidimensional data points. These
data points are gathered using a window sliding technique
and analyzed through the Kernel Density Estimators (KDE)
method. S.Rost et al. [9] proposed a solution for detecting
errors in sensor networks by having sensors monitor each
other’s periodically transmitted packets and send the collected
information to each other. In [10], the authors proposed DICE,
which consists of two phases: the pre-computing phase and
the real-time phase. In the pre-computing phase, binary state
sets are formed by extracting states of devices in length-
fixed time windows and transition probabilities between state
sets are computed. In the real-time phase, faulty devices
can be detected by checking binary state sets and transition
probabilities in the past. However, there are some drawbacks to
this method. First of all, when extracting devices’ states in time
windows into state sets, numeric states have to be converted



to binary forms, so part of the information represented by
numeric states may be lost. Secondly, because state sets consist
of every device state in a house, so there is no dependency
between some dimensions in state sets. As a result, the noise
from independent dimensions in state sets can cause a high
false positive rate when these state sets are utilized to identify
anomalies.

In this paper, our proposed solution can deal completely
with these above problems. The contributions of this paper
are summarized as follows.

• We propose the novel concept of the Frequent ACT
Group, consisting of a key actuator and devices that are
frequently triggered simultaneously with the key actuator.
This concept aims to group devices with a strong correla-
tion, which is an important factor in detecting anomalies.

• We apply unsupervised learning model KNN with the
Mahalanobis metric to learn historical data points of
frequent groups.

• We propose a controlling algorithm to decide whether a
state of a frequent group is abnormal or not.

• We implement and test our solution with real-world
datasets to compare the results with baseline methods.

Organization. The rest of this paper is organized as follows.
In §II, we introduce kinds of anomaly in smart homes and
classify them. §III illustrates our proposed approach to detect
anomaly. Following that, we give the evaluation of the results
of experiments in §IV. §V concludes and highlights our
contribution and mentions the future works.

II. PRELIMINARIES

In this section, we illustrate the definition of abnormal
behaviors and anomalies in the context of smart homes. Then,
we state the anomaly detection problem in smart homes.

A. Anomalies classification in smart home dataset

When considering smart homes’ environment, there are nu-
merous factors that are involved. These factors can be intrinsic
factors such as homeowners, smart devices, or extrinsic factors
such as temperature and humidity. As a result, any change in
the state of a factor can lead to a shift in the state of the
smart home. States that occurred frequently in the past are
considered as normal states, while states that never or rarely
occurred are abnormal states. Some obvious abnormal behav-
iors can be perceived by human senses. However, homeowners
cannot monitor their smart homes’ environment continuously,
nor can they detect all abnormal behaviors. Therefore, IoT
systems have been developed to monitor and detect abnormal
behaviors for homeowners. Formally, we define an anomaly
in a smart home’s environment at a time t as a set of recorded
states from one or many smart devices that is inconsistent
with data points obtained before the time t and persists for
a sufficiently long duration. With the above definition, we
categorize common types of anomaly as follows:
Interference. This refers to anomalies caused by outside
factors. For example, some tapes or dirt accidentally cover the
light sensors so they report values that are lower than usual,

or in the case of a fire hazard, temperature sensors will report
values much higher than average.
Location. In some cases, sensors can be moved to the wrong
location or motion sensors just fire off without a user’s pres-
ence causing a location anomaly. During sensor maintenance
where the user is forced to uninstall the device and reinstall it
again later, they can potentially install it in the wrong location.
Another case is in a house that does not have regular clean-up,
spider webs can cover the motion sensor causing it to go off
constantly even though nobody is around. All of these will
generate an abnormal location pattern in the reported data.
Stuck at. The sensor itself can have some problems either
with its embedded software being too outdated or its hardware
getting damaged which can lead to readings that just fluctuate
around a certain value over a long period of time. Other
devices that rely on this sensor will also behave abnormally
as a result.
Malfunction. Sensors are not the only devices that can
get faulty. These can include the electronic devices in our
home as well, which is what this type of anomaly is about.
Air conditioners or fans can get broken down leading to an
abnormally low temperature reading even though the actuator
controlling these devices has turned on. The same kind of
scenario can happen to other sensors such as light sensors,
humidity sensors, etc.

B. Anomaly classification in smart home dataset

Detecting abnormal behaviors automatically is crucial in
protecting and facilitating homeowners in their own houses. As
we mentioned in the previous part, abnormal behaviors may
cause anomalies in the data set collected from smart devices.
Therefore, detecting an abnormal behavior is equivalent to
detecting its corresponding anomaly in the data set. Formally,
we define the anomaly detection problem as follows:

Definition 2.1: (Anomaly detection) Consider the environ-
ment of a smart home, consisting of a set of smart devices
D. Let P = {(ti, di, vi) | ti ∈ R, di ∈ D, vi ∈ R∗} denote
the collected data set, where ti indicates the time at which the
data point was collected, di indicates the device reporting the
data point, and vi indicates the state (value) of device di at
time ti. Given that there are abnormal behaviors occurring
non-simultaneously in the environment, we need to detect
anomalies corresponding to these abnormal behaviors in the
data set P.

III. METHOD

Here, we present our proposed method to detect anomalies.
Our method consists of four steps: Classifying, Grouping,
Learning and Detecting.

A. Classifying devices and splitting dataset

Based on the function of devices in smart homes, we
categorize these devices into two main groups: actuators and
sensors. Actuators operate and send data to home gateways
only when triggered. For example, doors or light switches send
their states of ’ON’ and ’OFF’ to gateways only when they

2



are activated by the user. In contrast, sensors periodically send
data to home gateways. For instance, temperature sensors and
humidity sensors report real-time temperature and humidity
levels to the gateway every 5 minutes. Changes in the states of
devices over time are recorded in the dataset in chronological
order. In addition, we segment the entire dataset into time
windows with an equal size. Each time window contains
changes in the states of devices over a fixed duration.

B. Grouping devices

In smart homes, user activities usually trigger multiple de-
vices simultaneously. Different activities lead to the activation
of different sets of devices. Thus, in the dataset, certain sets of
devices will appear more frequently in the same time windows
than others. We refer to such sets of devices as frequent
groups. More specifically, given a threshold ω, we provide
the definition of frequent groups as follows:

Definition 3.1: Frequent groups are collections containing
devices in a smart home such that these devices report the
change of their states simultaneously at a rate no smaller than
a given threshold ω.

Based on Definition 3.1, devices on the same frequent
groups are supposed to have strong correlations to each other.
However, in smart homes, sensors, which monitor properties
such as temperature or humidity, are very sensitive to envi-
ronmental changes and will frequently fire events reporting
those changes. Thus, there is a case that sensors, despite
lacking a meaningful correlation, report state changes within
the same time windows. This defeats the intended purpose of
the frequent groups. On the other hand, in smart homes, the
frequency of reporting states’ change from actuators is typi-
cally low, as these devices are triggered only when activated
by the user’s actions. In addition, activation or deactivation
of actuators usually triggers state changes for specific devices
that closely relate to it. Hence, in order to mitigate the impact
of high-frequency state changes in sensors, we introduce a
novel concept of frequent ACT groups defined as follows:

Definition 3.2: Frequent ACT groups are frequent groups
that associate with a designated key actuator.

Frequent ACT groups can be discovered by association rule
mining algorithms such as FP-Max or FP-Growth [11]. For
each frequent ACT group, we construct a collection of states
of devices in the group in observable time windows, denoted
as ACT points. In the case that there is a device missing in a
time window, we assume that the state of the device do not
change in that time window and replace the missing value of
that device in the ACT point by its most recent state. As a
result, each frequent ACT group is associated with a set of
ACT points.

C. Learning

In order to determine whether a data point observed from
a frequent ACT group is abnormal or normal, we base it
on the Mahalanobis distance between the ACT points and
their k neighbors in the same set. Although there are other
distance metrics such as Euclidean, Manhattan, Cosine, and

Canberra,... most of them do not consider the distribution
of data like Mahalanobis. Since features of vectors in the
space that represent frequent ACT groups have a strong
correlation or in other words, they tend to form groups, we
would like to capture this characteristic. Compared to other
metrics, Mahalanobis metric is superior in detecting anomalies
in ACT groups because Mahalanobis metric also measures the
correlation between features in ACT points. For reference, the
Mahalanobis distance between two ACT points xi and xj is
given by ∆2 = (xi−xj)⊤Σ−1(xi−xj), where Σ is a d× d
covariance matrix.

We construct a set of KNN models using the Mahalanobis
metric associated with frequent ACT groups. More specifi-
cally, for a given frequent ACT group G, the corresponding
KNN model is trained using a set of ACT points from G col-
lected in the historical dataset. Subsequently, when presented
with a new ACT point, the trained KNN model can determine
the nearest Mahalanobis distance between the new point and
the points in the training set. This distance is used to determine
whether a state corresponding to a frequent ACT group in a
time window is potentially abnormal or not.

D. Detecting

Here, we propose the detecting algorithm (Algorithm 1) to
detect the device that causes the anomaly and the time at
which it happens. Our algorithm takes the collected dataset
P , the set of frequent ACT groups A, the set of trained KNN
models corresponding to these groups K, the starting time
Tstart, the ending time Tend, the time window length tw, the
distance threshold γ and the anomaly threshold ψ as inputs.
The algorithm returns the abnormal device d̄ and the detecting
time t̄ as outputs.

For the first step, Algorithm 1 initializes anomaly scores for
frequent ACT groups (line 1). These scores are used to decide
whether a group is abnormal or not. Then, we repeatedly
consider the time slot t in range of (Tstart, Tend) (line 2). For
each t, we can construct a time window from t− tw to t, and
the set of events happened during that time window (line 3).
In each time window, we consider each frequent ACT group
G ∈ G by forming an ACT point S corresponding to the group
(line 4-5). Then, after defining the KNN model corresponding
to the group G as K(G), we calculate the Mahalanobis distance
l from the ACT point S to the model K(G) (line 6-7). If the
distance l exceeds the distance threshold γ, we increase the
anomaly score for the group G (line 8-9). In case the score
of G exceeds the anomaly threshold ψ, the time window from
t− tw to t is considered an abnormal time window. Next, we
find the abnormal device in this time window (line 10-21).
Specifically, in order to find this device, we examine each
device d ∈ G and try to replace the current value of d in S
with another value v′ that occurred in the past (line 12-15).
If the replacement of the value of d eliminates the anomaly,
we detect d as the abnormal device (line 16-21). The total
runtime of Algorithm 1 is heavily dependent on the number
of frequent ACT groups, and the maximum size of frequent
ACT groups. Because the number of actuators in smart homes,

3



Algorithm 1: Detecting algorithm
Input: The collected dataset

P = {(t, d, v) | t ∈ R, d ∈ D, v ∈ R∗}, the set
of frequent ACT groups G, the set of trained
KNN models K, the starting time Tstart, the
ending time Tend, the time window length tw,
the distance threshold γ, and the anomaly
threshold ψ

Output: The abnormal device d̄, and detecting time t̄
1 Initialize c : G→ R as the anomaly scores with

c[G] = 0∀G ∈ G
2 for t = Tstart; t ≤ Tend; t = t+ tw do
3 Let P ′ = {p = (t, d, v)|p ∈ P, t− tw <= p.t <= t}

as the set of events happened in the time window
from t− tw to t.

4 for G in G do
5 Let S as the ACT point constructed by the set

of datapoints {p.v|p ∈ P ′, p.d ∈ G}.
6 Let K(G) ∈ K as the KNN model

corresponding to the group G.
7 l← K(G)(S)
8 if l > γ then
9 c[G]← c[G] + 1

10 if c[G] > ψ then
11 for d in G do
12 Let V (d) as the set of values of device

d that happen frequently in the history.
13 is_anomaly ← False
14 for v′ ∈ V (d) do
15 Let S′ as the ACT point obtained

from S by replacing the value of
device d in S to v′.

16 l′ ← K(G)(S′)
17 if l′ ≤ γ then
18 is_anomaly ← True
19 break

20 if is_anomaly then
21 return d̄ = d, t̄ = t

which corresponds to the number of frequent ACT groups,
is usually small, our detecting algorithm can be efficient in
practice.

IV. EXPERIMENT AND EVALUATION

In this section, we aim to evaluate the efficiency of our
proposed method. First, we explain the setting for our exper-
iments. Then, we present the experimental results.

A. Setting

1) Datasets: Our method is evaluated on five real-world
public datasets namely hh102, hh106, hh108, hh113 and hh114
from the CASAS smart home projects[12]. All of these came

from the same data group titled Human Activity Recognition
from Continuous Ambient Sensor Data and were collected
in multiple smart home testbeds hosted at Washington State
University in 2021, so it is relatively new compared to other
data from CASAS. Each smart home in these datasets was
instrumented with various types of sensors. The layout of these
devices can be checked in the sensor map that came with each
dataset like Figure 1. Sensor data are collected continuously
while residents perform their normal routines. Each dataset
with an average of 115 devices generates around 3 to 12
million sensor events. A congested environment like this is the
reason why we chose these specific datasets. It will help us
explore a wide range of closely related device groups, thereby
demonstrating the capabilities of the association rule mining
algorithm.

Dataset Sensors Actuators Events
hh102 95 10 6472396
hh106 155 23 6364167
hh108 138 18 12550848
hh113 95 16 3213217
hh114 92 16 11688878

TABLE I
NUMBER OF DEVICES AND EVENTS IN EACH DATASET

2) Methodology and Measurement: The goal of the exper-
iment is to assess the effectiveness of detecting anomalies
mentioned in section II-A. This assessment will be based on
three measurements: precision - the fraction of actual noises
among the detected abnormal events, recall - the percentage
of injected abnormal events being detected and det_time - the
time distance between the timestamp when anomalous events
start appearing and the first time an abnormal event is detected.

Fig. 1. Smart home sensor map in the hh102 dataset.

Since there are little to no anomalies in the original CASAS
datasets, the time window that we can test our detection
method is very limited. Thus, to broaden it, we will generate
and insert faulty events into the dataset. About 15 weeks of
data that is independent of the training data will be extracted
from each original dataset to act as a base for test data. With
each type of anomaly, we specify a context or test scenario
that is suitable with the current dataset and simulate it with
the aforementioned anomalous events:
Interference. This anomaly can be represented in many
ways but in our experiment, we would like to simulate an
attack from a third party that tampered with the sensor data

4



Fig. 2. Anomaly detection results collected after running through all 200 test data. In each graph, the y-axis is the collected result in percentage, the x-axis
is the dataset used. The first graph row is the precision while the second one is the recall. Each graph column represents an anomaly type that we want to
detect.

because in our opinion, this is the most dangerous scenario
that can happen. After selecting a set of faulty devices, we
perform some statistics methods to identify the value range
that these devices usually report. We then select a value that
is completely outside of this range and insert it into every
event that belongs to the abnormal devices.
Location. We generate these anomalies by selecting pairs of
motion sensors that belong in different rooms and have their
events fire simultaneously.
Stuck at. We simulate this by selecting a set of sensor devices
and setting a stuck-at value for each of them. Then we insert
multiple events that belong to these sensors with values close
to the stuck-at value into the dataset. These events will also
be inserted at a randomized time frequency to see how our
method performs under such uncertainty.
Malfunction. Since there is little information about the elec-
tronic devices in the dataset we are using, generating this
anomaly can be quite limited. One way we achieve this is by
assuming some light bulbs in the smart home get damaged,
which leads to abnormal light sensor values when the actuators
or light switches get turned on. So we first need to know which
light sensors are directly affected by a light switch, this can
easily be done by checking the sensor map like Figure 1 that
came with each dataset. Afterward, we just need to change
their value to a significantly lower one compared to when the
light switch is on.

All of these simulation methods are based on our obser-
vation of real-life anomalies. The value of the anomalous
events as well as their placement inside the original dataset are
selected so that they can reflect reality as much as possible.
A total of 200 test data files are generated with 10 for each
pair of anomaly type and dataset. Aside from evaluating our
method, we will also run two other anomaly detection methods
that also use a heterogeneous approach, CLEAN[13] and

DICE[10] on these test data and compare their effectiveness
to our own. Both DICE and our method require a learning
phase so to ensure fairness, both will be receiving 6 months’
worth of data from each original dataset as training data. The
third measurement det_time will be calculated in a separate
experiment mainly because we notice that the time taken to
detect anomaly depends on how frequently the actuator event
is fired. So to assess det_time, we generate a different set
of malfunction anomalies test data where we manually insert
actuator events as well as abnormal sensor events related to it
at different time frequencies into the data set.

B. Anomaly Detection Test Results

After running every method on each test data, we calculate
the average precision and recall. As shown in Figure 2, both
measures produced by our method are consistently high across
all test data with most of them reaching above 80%, outper-
forming CLEAN and DICE. This shows that the frequent ACT
groups our method learned do indeed contain devices that are
closely related to each other and that the algorithm can detect
abnormal data points. In terms of precision, in some test data,
such as location and malfunction anomalies, the two methods
that we want to compare barely detect anything. This may
contradict the overall better results collected in their original
work. After inspecting the generated results, we notice that
these numbers are not caused by the lack of detection but
rather an overabundance of false positives, evidence in the
high recall and low precision in most test cases.

For CLEAN, even though detecting location anomalies is
its strong point thanks to its hierarchy-based algorithm, it still
produces low precision. This is due to the fact that CLEAN can
not detect "missing" data. In our experiments, specifically the
location anomalies, this "missing" data refers to events belong
to a motion sensor that has been moved to a different area so

5



Fig. 3. Detection time results. This graph showcases the relationship between
how frequently the actuator is used and the speed at which our method can
detect anomalies, both properties are measured in minutes.

it does not fire with the rest of the devices in its old area. In
other words, CLEAN can only detect location anomalies if it
shows up in an area that it is not supposed to, not when it
is missing from its original area. When trying to detect the
latter, which occurs quite frequently in the test data, CLEAN
will produce a great number of false positives, lowering the
overall precision. This is not the case for our method since
whether a device is missing or not adds to the penalty score
during the detection step. Thus, it does not suffer from the
same weakness as CLEAN.

In DICE’s case, the algorithm resolves around how the
sensors’ state changes over time, which in order to be effective
requires it to learn a lot of transactions. So when the training
data is too short, there is a high chance that most of the
state changes in the testing data have not been learned yet
and will be classified as anomalies. In our experiments, with
the same training data, our method outperforms DICE in most
test data since we do not rely on transactions or state changes
but rather on whether the current data point deviates greatly
or not from past data points. Clearly, from the test results, it
does not require as much training data as the prior.

Figure 3 presents the results of our detection time ex-
periments. In this graph, the x-axis can be interpreted as
the frequency at which we inserted the actuator events for
each test case, the y-axis is the det_time. Although it is not
linear, there is a clear trend that if the actuator device is
used less frequently, it will take more time for our method
to detect anomalies related to that device. This can become a
vulnerability if sensors that are in the same frequent group as
these actuators become faulty as they will not be detected as
easily as other devices. But like these actuators, they rarely
affect the user’s daily activities, so this behavior is acceptable.
Other than that, the detection time is quite reasonable as it
is mostly lower than the actuator events frequency. In these
cases, our method detects almost immediately when the user
interacts with the actuator.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an anomaly detection method
that is based on a heterogeneous approach. It first requires a
learning phase that uses an association rule mining algorithm
to learn closely related device groups known as frequent

ACT groups. Afterward, it trains KNN models based on
these groups’s data points and Mahalanobis distance to detect
abnormal device states. We tested our method’s effectiveness
on five real-world data sets with four different scenarios in
which anomalies can occur. The experiments showed promis-
ing results in detecting both binary and non-binary sensor
anomalies as well as performing under a reasonable amount of
training data. It also demonstrated that it can overcome some
of its predecessors’ weaknesses such as CLEAN inability to
detect missing data. Currently, our method can work well with
devices that are in frequent ACT groups. But in some cases, a
device that does not belong to any frequent groups can exist.
This happens due to the fact that in every smart home or home
in general, there are always some locations in the house that
the user rarely visits or is visited less frequently than others.
Our future work will tackle this problem either by improving
the rule-mining algorithm or integrating a different type of
data structure such as a hierarchy tree or a correlation matrix
in order to better visualize the relationship between sensors.

REFERENCES

[1] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of internet of
things for smart home: Challenges and solutions,” Journal of cleaner
production, vol. 140, pp. 1454–1464, 2017.

[2] S. S. I. Samuel, “A review of connectivity challenges in iot-smart home,”
in 2016 3rd MEC International conference on big data and smart city
(ICBDSC). IEEE, 2016, pp. 1–4.

[3] J. B. . T. N. Desk, “New census data reveals nearly 30are single
occupancy.” [Online]. Available: https://shorturl.at/iHJN4

[4] M. Yamauchi, Y. Ohsita, M. Murata, K. Ueda, and Y. Kato, “Anomaly
detection in smart home operation from user behaviors and home
conditions,” IEEE Transactions on Consumer Electronics, vol. 66, no. 2,
pp. 183–192, 2020.

[5] L. G. Fahad and M. Rajarajan, “Anomalies detection in smart-home
activities,” in 2015 IEEE 14th international conference on machine
learning and applications (ICMLA). IEEE, 2015, pp. 419–422.

[6] S. Ramapatruni, S. N. Narayanan, S. Mittal, A. Joshi, and K. Joshi,
“Anomaly detection models for smart home security,” in 2019 IEEE 5th
Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE
Intl Conference on High Performance and Smart Computing,(HPSC) and
IEEE Intl Conference on Intelligent Data and Security (IDS). IEEE,
2019, pp. 19–24.

[7] D. Janakiram, A. Kumar, and A. M. Reddy V., “Outlier detection in
wireless sensor networks using bayesian belief networks,” in 2006 1st
International Conference on Communication Systems Software Middle-
ware, 2006, pp. 1–6.

[8] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos, “Online outlier detection in sensor data using non-
parametric models,” in Proceedings of the 32nd International Confer-
ence on Very Large Data Bases, ser. VLDB ’06. VLDB Endowment,
2006, p. 187–198.

[9] S. Rost and H. Balakrishnan, “Memento: A health monitoring system for
wireless sensor networks,” in 2006 3rd Annual IEEE Communications
Society on Sensor and Ad Hoc Communications and Networks, vol. 2,
2006, pp. 575–584.

[10] J. Choi, H. Jeoung, J. Kim, Y. Ko, W. Jung, H. Kim, and J. Kim,
“Detecting and identifying faulty iot devices in smart home with context
extraction,” in 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), 2018, pp. 610–621.

[11] H. Li, Y. Wang, D. Zhang, M. Zhang, and E. Y. Chang, “Pfp: Parallel
fp-growth for query recommendation,” in Proceedings of the 2008 ACM
Conference on Recommender Systems, ser. RecSys ’08. New York,
NY, USA: Association for Computing Machinery, 2008, p. 107–114.
[Online]. Available: https://doi.org/10.1145/1454008.1454027

[12] “MS Windows NT kernel description,” https://casas.wsu.edu/datasets/.
[13] J. Ye, G. Stevenson, and S. Dobson, “Fault detection for binary sensors

in smart home environments,” in 2015 IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2015, pp. 20–28.

6


