
Ki ểm chứng sự tuân thủ về ràng buộc thời gian trong các

ứng dụng phần mềm

Trịnh Thanh Bình, Trương Ninh Thuận, Nguyễn Việt Hà

Trường Đại học Công nghệ - Đại học Quốc Gia Hà Nội

Email: {binhtt.di07, thuantn, hanv}@vnu.edu.vn

Tóm tắt. Ràng buộc thời gian giữa các thành phần đóng vai trò quan trọng trong

các hệ thống phần mềm đặc biệt với các hệ thống thời gian thực, hệ thống nhúng. Bài
báo này đề xuất một phương pháp kiểm chứng sự tuân thủ về ràng buộc thời gian thực thi
giữa các thành phần phần mềm so với đặc tả sử dụng lập trình hướng khía cạnh. Trong
đó, ràng buộc thời gian giữa các thành phần được đặc tả bằng biểu đồ thời gian của
UML (Unified Modeling Language) và biểu thức chính quy thời gian. Từ các đặc tả này
mã kiểm chứng aspect sẽ được tự động sinh ra và đan với mã của các thành phần để tính
thời gian thực thi từ đó kiểm chứng sự tuân thủ so với đặc tả. Phương pháp này đã được
thực nghiệm với nhiều thành phần phần mềm khác nhau. Kết quả thực nghiệm cho thấy
phương pháp được đề xuất có thể có thể phát hiện được các vi phạm ràng buộc thời gian
giữa các thành phần phần mềm so với đặc tả.

Từ khóa: Kiểm chứng mô hình, biểu thức chính quy thời gian, biểu đồ thời gian,
aspect, AspectJ, UML.

1. Giới thi ệu
Phần mềm ngày càng đóng vai trò quan trọng trong xã hội hiện đại. Tỷ trọng giá trị

phần mềm trong các hệ thống ngày càng lớn. Tuy nhiên, trong nhiều hệ thống, lỗi của
phần mềm gây ra các hậu quả đặc biệt nghiêm trọng, không chỉ thiệt hại về mặt kinh tế
mà còn làm tổn thất trực tiếp sinh mạng con người [17], đặc biệt với các phần mềm thời
gian thực như phần mềm điều khiển hệ thống giao thông và thiết bị giao thông.

Trong công nghiệp phần mềm, phương pháp chủ đạo để đảm bảo chất lượng vẫn là
kiểm thử phần mềm bằng các bộ dữ liệu test (test suite). Tuy nhiên, việc kiểm thử ở mức
đơn vị (unit testing) bằng các bộ dữ liệu test thường chỉ phát hiện được các lỗi về giá trị
đầu ra (output), không thể phát hiện lỗi vi phạm các ràng buộc thiết kế như ràng buộc về
thời gian, thứ tự thực hiện giữa các thành phần,... Các vi phạm ràng buộc này sẽ gây lỗi
hệ thống trong một ngữ cảnh đặc biệt khi tích hợp nhiều thành phần và chạy với một tập
dữ liệu đặc biệt nào đó. Khi đó việc xác định chính xác vị trí gây lỗi sẽ rất khó khăn và
làm chi phí sửa lỗi tăng cao.

Các phương pháp kiểm chứng hình thức như chứng minh định lý (theorem
proving)[13] và kiểm chứng mô hình (model checking)[11,15,16] đã được ứng dụng
thành công để kiểm chứng mô hình đặc tả phần mềm. Cài đặt thực tế thường chỉ được
thực hiện sau khi mô hình hệ thống đã được kiểm chứng. Tuy nhiên, cài đặt thực mã
nguồn chương trình có thể vi phạm các ràng buộc thiết kế. Do đó, phần mềm có thể vẫn
tồn tại lỗi mặc dù thiết kế đã được kiểm chứng và thẩm định chi tiết [17].

Để giải quyết các vấn đề này, chúng tôi đã đề xuất các phương pháp kiểm chứng sự
tuân thủ của cài đặt so với thiết kế vào thời điểm thực thi[2,3,10] sử dụng lập trình hướng
khía cạnh (AOP - Aspect-Oriented Programming) [6,8]. Với AOP, chúng ta có thể cài đặt
các mô đun đặc biệt gọi là aspect . Các aspect sẽ được kết hợp tự động với chương
trình bằng bộ biên dịch đặc biệt để giám sát sự hoạt động và phát hiện vi phạm giữa
chương trình và ràng buộc thiết kế trong bước kiểm thử.

Phương pháp kiểm chứng ràng buộc thời gian (Timing Constraints - TC) giữa sự cài
đặt các thành phần phần mềm so với đặc tả biểu đồ thời gian (Timing Diagram - TD) của
UML được đề xuất trong[2] còn nhiều hạn chế trong đặc tả như khả năng biểu diễn của
TD, tính khả chuyển giữa các công cụ UML. Hơn nữa, phương pháp này cũng chưa kiểm
chứng được ràng buộc thời gian giữa các thành phần tương tranh. Do đó bài báo này
chúng tôi mở rộng với TC được đặc tả bằng biểu thức chính quy thời gian (Timed
Regular Expressions - TRE), và kiểm chứng ràng buộc thời gian giữa các thành phần
tương tranh.

 Các phần còn lại của bài báo được cấu trúc như sau. Mục 2 trình bày một số nghiên
cứu liên quan. Phương pháp kiểm chứng ràng buộc thời gian giữa các thành phần sử dụng
AOP được trình bày trong Mục 3. Mục 4 trình bày một số kết quả thực nghiệm, cuối cùng
là các kết luận và hướng phát triển tiếp theo.

2. Một số nghiên cứu liên quan
Đã có một vài phương pháp được đề xuất để kiểm chứng ràng buộc thời gian trong

các hệ thống phần mềm.

SACRES[1] là một môi trường kiểm chứng cho các hệ thống nhúng, cho phép
người sử dụng đặc tả ràng buộc thời gian bằng các biểu đồ thời gian dạng kí hiệu
(symbolic timing diagrams). Các đặc tả thiết kế được dịch sang máy hữu hạn trạng thái
(finite state machine) được tối ưu và kiểm chứng bằng mô hình kí hiệu (symbolic model
checking). Tuy nhiên phương pháp này chỉ kiểm chứng ở mức mô hình, không phải ở
mức cài đặt.

Wegener[18] đề xuất phương pháp để kiểm chứng ràng buộc thời gian trong các hệ
thống thời gian thực dựa trên kĩ thuật kiểm thử tiến hóa (evolutionary testing). Trong đó,
vi phạm ràng buộc thời gian được định nghĩa là đầu ra (output) được đưa ra quá nhanh
hoặc quá chậm so với đặc tả. Do đó, nhiệm vụ của người kiểm thử là thiết kế các đầu vào
(input) với thời gian thực hiện nhanh nhất hoặc chậm nhất để phát hiện các vi phạm. Việc
thiết kế các đầu vào được quy về bài toán tối ưu trong tính toán tiến hóa để tự động tìm
đầu vào với thời gian thực hiện nhanh nhất hoặc chậm nhất. Tuy nhiên, phương pháp này
chưa kiểm chứng được ràng buộc thời gian giữa các thành phần như phương pháp được
đề xuất trong bài báo này.

Guo và Lee[9] đề xuất phương pháp kết hợp giữa đặc tả và kiểm chứng ràng buộc
thời gian cho các hệ thống thời gian thực. Trong đó, ràng buộc thời gian cùng với yêu cầu
hệ thống được đặc tả và kiểm chứng bằng môđun TER nets[14]. Giống như [1], phương
pháp này chỉ kiểm chứng ở mức mô hình, không phải ở mức cài đặt.

Trong [7] phương pháp sử dụng biểu đồ thời gian của UML được đề xuất để ước
lượng thời gian thực thi trong trường hợp xấu nhất của các thành phần trong hệ thống ở
thời điểm thiết kế. Thời gian thực thi được ước lượng dựa trên biểu đồ ca sử dụng kết hợp
với các thông tin bổ sung về hành vi của người sử dụng hệ thống trong tương lai. Phương

pháp này cũng không kiểm chứng ràng buộc thời gian thực thi giữa các thành phần so với
đặc tả bằng biểu đồ thời gian.

Jin[12] đề xuất một phương pháp hình thức để kiểm chứng tĩnh thứ tự thực hiện
của các phương thức (Method Call Sequence - MSC) trong chương trình Java tuần tự.
Phương pháp này sử dụng ôtômát hữu hạn trang thái để đặc tả giao thức, các chương
trình Java được biến đổi thành các văn phạm phi ngữ cảnh (context free grammar- CFG)
sử dụng công cụ Accent1. Ngôn ngữ sinh ra bởi ôtômát L(A) được so sánh với ngôn ngữ
sinh ra bởi CFG L(G) , nếu L(G) ⊆L(A) thì chương trình Java tuân theo đặc tả giao
thức, và ngược lại. Ưu điểm của phương pháp này đó là các vi phạm có thể được phát
hiện sớm, tại thời điểm phát triển hoặc biên dịch chương trình. Do đó sự thực thi của
chương trình không bị ảnh hưởng.

Deline và Fahndrich [14] đề xuất phương pháp kiểm chứng vào thời điểm thực thi
sự tuân thủ giữa cài đặt và đặc tả MCS. Phương pháp này sử dụng máy trạng thái để đặc
tả MCS. Đặc tả MCS sau đó được biên dịch sang mã nguồn và đan xen với mã nguồn
chương trình để kiểm chứng động sự tuân thủ của cài đặt so với đặc tả MCS. Các mệnh
đề tiền và hậu điều kiện của các phương thức trong MSC cũng được đặc tả và kiểm
chứng. Tuy nhiên, các phương pháp này chưa kiểm chứng ràng buộc thời gian giữa các
thành phần.

Yoonsik và Perumandla [4,5] mở rộng ngôn ngữ đặc tả, và trình biên dịch JML để
biểu diễn giao thức tương tác bằng biểu thức chính quy. Sau đó, biểu thức chính quy
được biên dịch thành mã thực thi để chạy đan xen với chương trình gốc để kiểm chứng sự
tuân thủ giữa cài đặt so với đặc tả giao thức tương tác. Các hành vi của chương trình gốc
sẽ không bị thay đổi ngoại trừ thời gian và kích thước. Như [12], phương pháp này chưa
kiểm chứng các ràng buộc về thời gian giữa các thành phần so với đặc tả.

3. Phương pháp kiểm chứng ràng buộc thời gian giữa cài đặt thành
phần phần mềm so với đặc tả

Giả sử hệ thống rút tiền tự động của máy ATM (ATM - Automatic Teller Machine)
gồm ba thành phần khách hàng được biểu diễn bằng đối tượng user, bộ điều khiển
ATM được biểu diễn bằng đối tượng ATM, và thành phần cuối cùng máy chủ ngân hàng
được biểu diễn bằng đối tượng Bank . Khi đó, bài toán kiểm chứng các ràng buộc thời
gian thực thi giữa các thành phần của hệ thống ATM được đặc tả như sau, Hình 1.
1. Thời gian thực thi của phương thức Withdraw(..) được thực hiện với đoạn thời

gian đáp ứng cho phép là [a1,b1]. Sau đó lần lượt đến các phương thức
CheckBalanceAccount(..) , CheckBalanceATM(..) và Return(..)
được thực hiện với đoạn thời gian cho phép tương ứng là [a2, b2], [a3, b3] và [a4, b4].
Cuối cùng, phương thức GiveMoney(..) được thực hiện với thời gian đáp ứng là
[a5, b5].

2. Tổng thời gian thực hiện của các phương thức trên không được vợt qua ngưỡng θ cho
phép.

3. Các phương thức CheckBalanceATM(..) phải kết thúc trước phương thức
CheckBalanceAccount(..). Hai phương thức này được thực hiện song song
với nhau.

1 http://accent.compilertools.net/Accent.html

Hình 1. Biểu đồ thời gian của giao thức rút ti ền.
Chúng tôi đề xuất phương pháp kiểm chứng sự tuân thủ về ràng buộc thời gian

trong các ứng dụng phần mềm như sau, Hình 2.
1. Sử dụng biểu đồ thời gian (Timing Diagram-TD) hoặc biểu thức chính quy thời

gian (Timed Regular Expression – TRE) để đặc tả ràng buộc thời gian (Timing
constraint –TC),

2. Tự động sinh mã aspect từ đặc tả TC,
3. Mã aspect sinh ra được tự động đan vào trước và sau mã thực thi của mỗi thành

phần trong chương trình để kiểm chứng động sự tuân thủ với các TC. Khi các
chương trình được thực hiện thì các mã đan xen vào có thể phát hiện được chính
xác các thành phần vi phạm với đặc tả TC. Trong khi đó, các hành vi của chương
trình, và thời gian thực thi của các thành phần sẽ không bị thay đổi.

Hình 2. Phương pháp kiểm chứng sự tuân thủ về ràng buộc thời gian.

3.1. Đặc tả các ràng buộc thời gian

Trong mục này chúng tôi định nghĩa hình thức các ràng buộc thời gian, sau đó là
phương pháp đặc tả các ràng buộc này dựa trên biểu đồ thời gian và biểu thức chính quy
thời gian.

Đặc tả ràng
buộc thời gian

TD, TRE

Mã kiểm
chứng

aspect

Sinh mã

Mã chương
trình với mã
kiểm chứng

Cài đặt
chương trình

Đan xen

Đan xen

thỏa
mãn đặc tả?

Vi phạm
đặc tả

thông báo/vết

Chạy

Sửa lỗi

Mã chương
trình với mã
kiểm chứng

Kết thúc/không lỗi Chương trình
được kiểm chứng

Loại mã aspect

BANK S3

Withdraw(..)
[a1,b1]

CheckBalaneAcount(..)
[a2,b2]

Return(..)
[a4,b4]

GiveMoney(..)
[a5,b5]

USER S0

ATM S1

BANK S2

{Wd Diagram}

1 3 2 0 …

CheckBalaneATM(..)
 [a3,b3]

Định ngh ĩa 1 (Ràng bu ộc thời gian th ực thi). Ràng buộc thời gian thực
thi của một thành phần TC là đoạn thời gian đáp ứng cho phép của nó khi được
thực thi, được biểu diễn bằng một bộ hai thành phần [],TC a b= trong đó

, àa b N v a b∈ < .
Ví dụ trong Hình 1 giả sử a1=10ms, b1 = 30ms, và τ(Withdraw(..)) là thời gian

thực thi của thành phần Withdraw(..) . Khi đó ràng buộc thời gian thực thi của thành
phần này là đoạn thời gian [10,30] với 10ms ≤ τ(Withdraw(..)) ≤ 30ms.

Định ngh ĩa 2 (Ràng bu ộc thời gian gi ữa các thành ph ần tuần tự). Giả
sử ri, và ci lần lượt là thời điểm bắt đầu và kết thúc thực hiện của một thành phần
TCi, thời gian thực thi ti = ci – ri, ti ∈ [ai, bi], với i=1,…,n (ti thỏa mãn ràng buộc
thời gian của một thành phần, định nghĩa 1). Khi đó ràng buộc thời gian giữa các
thành phần là tổng thời gian thời gian thực thi không được vượt qua của các

thành phần
1

n

i
i

t θ
=

≤∑ , với Nθ ∈ .

Giả sử τ(α) là thời gian thực thi của thành phần α, và tổng thời gian thực thi của
các thành phần tuần tự Withdraw(..), CheckBalanceAccount(..),
Return(..) , GiveMoney(..) không vượt quá ngưỡng θ = 55ms . Khi đó ta có
ràng buộc thời gian giữa các thành phần tuần tự này như sau (định nghĩa 2).

τ(Withdraw(..)) + τ(CheckBalanceAccount(..)) + τ(Return(..))
+ τ (GiveMoney(..)) ≤ 55.

Định ngh ĩa 3 (Ràng bu ộc thời gian gi ữa các thành ph ần tương tranh) .
Giả sử τ(α1), τ(α2),…, τ(αn) là thời gian thực thi tương ứng của n thành phần
tương tranh α1, α2,…, αn. Khi đó ràng buộc thời gian giữa các thành phần này
được định nghĩa như sau:

() ()i jτ α τ αΘ với { }, , , , ,Θ ∈ < ≤ > ≥ = ≠ và , 1..i j n= , i j≠ .

 Giả sử hai thành phần CheckBalanceAccount(..) và
CheckBalanceATM(..) được thực hiện song song tại cùng một thời điểm, Hình 1.
Với ràng buộc là thành phần CheckBalanceATM(..) phải kết thúc trước thành phần
CheckBalanceAccount(..). Khi đó ta có ràng buộc thời gian giữa hai thành phần
tương tranh như sau (định nghĩa 3).

τ(CheckBalanceAccount(..)) > τ(CheckBalanceATM(..)).

3.1.1. Biểu thức chính quy thời gian
Biểu thức chính quy thời gian (Timed Regular Expression -TRE) là sự mở rộng của

biểu thức chính quy để đặc tả các ràng buộc thời gian độc lập với mã nguồn chương trình
để sinh ra mã aspect . Chúng tôi định nghĩa như sau.

Định ngh ĩa 4 (Biểu thức chính quy th ời gian) . TRE là một bộ ba TRE =
<C, M, S>. Trong đó,

- C = {c1,c2,…,cn} là tập hữu hạn các thành phần,
- M = {m1,m2,…,mm} là tập hữu hạn các phương thức,
- S = {s1,s2,…,sk} là tập hữu hạn các biểu thức biểu diễn mối liên hệ giữa

các thành phần được định nghĩa như sau:

[] *:: . , | || .| | | |s c m a b s s s s s s+=

- Trong đó: m ∈ M; a, b ∈ N; c ∈ C; s, si, sj ∈ S với { }, 1..i j k= ; si→sj là sự

kết hợp của hai hoặc nhiều biểu thức tuần tự; si|sj: phép hoặc; si||sj: phép
song song (các phương thức trong si và sj có thể được thực hiện song
song); s*: không hoặc nhiều phép lặp; s+: một hoặc nhiều phép lặp.

Ví dụ biểu đồ thời gian trong Hình 1 được biểu diễn bằng một biểu thức chính quy
thời gian TRE:

USER.Withdraw(..)[a 1, b1] →(ATM.CheckBalaneAccount(..)[a 2, b2

] ||BANK.CheckBalaneATM(..)[a 3, b3]) →BANK.Return(..)[a 4, b4] →ATM.G
iveMoney(..)[a 5, b5] . Trong đó, thành phần USER.Withdraw(..) được thực
hiện trước với ràng buộc thời gian thuộc đoạn [a1, b1], sau đó là thành phần ATM.
CheckBalaneAccount(..) và BANK.CheckBalaneATM(..) được thực hiện
song song nhau với ràng buộc thời gian lần lượt thuộc các đoạn [a2, b2] và [a3,b 3]. Tiếp
theo là các thành phần BANK.Return(..) và ATM.GiveMoney(..) được thực hiện
tuần tự với các ràng buộc tương ứng thuộc các đoạn [a4, b4] và [a5, b5].

3.1.2. Biểu đồ thời gian
Biểu đồ thời gian (Timing Diagram - TD) trong UML2.0 đặc tả thứ tự thực hiện

của các phương thức cùng với ràng buộc về thời gian. Chúng tôi định nghĩa hình thức
như sau:

Định ngh ĩa 5 (Biểu đồ thời gian) . TD là một bộ sáu TD = <S,S0, C,M σ,
F>. Trong đó, S là tập hữu hạn các trạng thái, C là tập các thành phần, M là tập
các phương thức. σ ⊆ S×C.M[a,b] → S là hàm chuyển trạng thái với a, b ∈ N và
a ≤ b là ràng buộc thời gian. S0, F ∈ S lần lượt là các trạng thái đầu và kết thúc.

Hình 1 biểu diễn biểu đồ thời gian cho một giao thức rút tiền của hệ thống ATM,
thứ tự thực hiện của các phương thức được thể hiện bằng các cung trong biểu đồ. Trong
đó:

- S={S 0,S 1, S2, S3, F},
- M={Withdraw,CheckBalaneAccount,CheckBalaneATM,Retur n,

GiveMoney},
- C = {USER,ATM,BANK},
- σ={S 0.USER.Withdraw [a1,b1] →S1;S 0.USER.Withdraw [a1,b1] →S3;

S1.ATM.CheckBalaneAccount [a2,b2] →S2;S 3.BANK.CheckBalaneATM [a

3,b3] →S2;S 2.BANK.Return [a4,b4] →S1, S1.ATM.GiveMoney [a5,b5] →F}.

3.2. Sinh mã aspect

Chúng tôi định nghĩa một mẫu để biểu diễn các aspect được sinh ra từ các đặc tả
ràng buộc thời gian như trong Bảng 1. Trong đó, các biến địa phương được định nghĩa để
tính thời gian thực thi của mỗi phương thức khi nó được thực hiện, và tính tổng thời gian
thực hiện của các phương thức (dòng 2, 3, 6, và 7). Đặc tả ràng buộc thời gian dưới dạng
biểu đồ thời gian được kết xuất ra tệp dạng xmi hoặc dạng txt đối với biểu thức chính
quy. Trong thực nghiệm chúng tôi đã xây dựng thuật toán đọc tên các phương thức và
ràng buộc thời gian tương ứng từ các đặc tả này (dòng 4 và 5). Các ràng buộc thời gian
đọc được sẽ được đưa vào điều kiện để so sánh với thời gian thực thi (dòng 8), và thông
báo các vi phạm nếu có (dòng 9). Ràng buộc thời gian trong các định nghĩa 1, 2 và 3
được dịch thành các biểu thức điều kiện trong aspect mẫu (dòng 8).

Bảng 1. Sinh mã aspect từ các đặc tả ràng buộc thời gian
import org.aspectj.lang.joinpoint;
variables
Variables are declared here;
...
...
aspect AspectName{before():(execution(* *.*(..)))&&

!within(AspectName){
 1. st = 0;
 2. Get •1;// the current system time;
}after():(execution(* *.*(..)))&& !within(AspectNam e){
 3. Get •2;// the current system time;
 4. Get method name from flie(task1, task2, ...);
 5. Get lower and upper bound on timing from file(r1, r2, ...);
 6. • = •2−•1;//Calculate the execution time of th e method;

 7. st += •;//the execution time of sequentia l method;
 8. if (•(•, r1, r2, ...)=false)//Checking timing constraint

conditions;
 9. Violation report;
}

3.3. Đan mã aspect

AspectJ cho phép đan xen mã aspect với các chương trình Java ở ba mức
khác nhau mức mã nguồn, mã bytecode và tại thời điểm nạp chương trình khi chương
trình gốc chuẩn bị được thực hiện.

Đan ở mức mã nguồn (source code weaving), AspectJ sẽ nạp các mã aspect và
Java ở mức mã nguồn (.aj và .java), sau đó thực hiện biên dịch để sinh ra mã đã
được đan xen bytecode , dạng .class . Đan xen ở mức mã bytecode (byte code
weaving), AspectJ sẽ dịch lại và sinh mã dạng .class từ các các mã aspect và Java đã
được biên dịch ở dạng (.class). Đan xen tại thời điểm nạp chương trình (load time
weaving), các mã của aspect và Java dạng .class được cung cấp cho máy ảo Java
(JVM). Khi JVM nạp chương trình để chạy, bộ nạp lớp của AspectJ sẽ thực hiện đan
xen và chạy chương trình.

Với việc đan xen ở mức mã bytecode và tại thời điểm nạp chương trình thì
phương pháp này có thể được sử dụng mà không yêu cầu phải có mã nguồn. Khi thay đổi
đặc tả thì mới phải phải sinh và biên dịch lại mã aspect .

4. Thực nghiệm
Chúng tôi đã cài đặt phương pháp này thành một công cụ kiểm chứng (TCVG –

Timing Constraint Verification Generator). Đầu vào của công cụ TCVG là các đặc tả
ràng buộc thời gian cho dưới dạng tệp có phần mở rộng là txt biểu diễn biểu thức chính
quy thời gian, và dạng xmi biểu diễn biểu đồ thời gian của UML. Đầu ra là các mã kiểm
chứng aspect của AspectJ .

Thực nghiệm được tiến hành với các chương trình mô phỏng của hệ thống ATM,
Hình 1. Cấu hình máy tính sử dụng vi xử lý 1500MHz, RAM 512, hệ điều hành Windows
XP. Từ đặc tả ràng buộc thời gian của giao thức này chúng tôi sử dụng công cụ TCVG
để sinh ra mã aspect và đan với chương trình ATM mô phỏng để kiểm chứng sự tuân
thủ về ràng buộc thời gian trong các định nghĩa 1, 2 và 3. Với mỗi thành phần chúng tôi
xây dựng các test đúng, sai khác nhau. Trong đó, các test đúng thì các thành phần
được cài đặt tuân thủ theo đặc tả ràng buộc thời gian và ngược lại.

Bảng 2. Ca kiểm thử đúng/sai của phương thức withdraw với ràng buộc thời gian
thực thi [726082, 143658] nano giây

public static long
correctTestWithdraw(long n){
 long max=5000000;
 //Your amount is not greater
than 5000000
 while(n>max){
 n=n-100;
 }
 return n;
}

public static long
wrongTestWithdraw(long n){
 long max=5000000;
 // Your amount is not greater
than 5000000
 if (n<=max) return n;
 else
 return wrongTest(n-100);
 }

Bảng 2 mô tả một test đúng bên trái và sai bên phải của thành phần withdraw
với đặc tả thời gian đáp ứng là [726082, 143658] nano giây. Trong thực nghiệm chúng
tôi truyền tham số n bằng 6000000, với test đúng được viết dưới dạng lặp thì thời gian
thực thi là 825524 nano giây thỏa mãn ràng buộc thời gian thực thi trong đoạn [726082,
143658]. Ngược lại với Test sai được viết dưới dạng đệ quy thì thời gian thực thi là
2111442 nano giây không thỏa mãn ràng buộc thời gian thực thi trong đoạn [726082,
143658].

Các chương trình mô phỏng được chạy 25 lần cho mỗi test đúng và sai với các
đặc tả ràng buộc thời gian thực thi trong cột 2, Bảng 3 (theo định nghĩa 1). Trong đó,
ràng buộc thời gian của các thành phần tuần tự tăng dần từ 50ns dến 500ns (theo định
nghĩa 2). Ràng buộc thời gian kết thúc trước/sau giữa hai thành phần song song (theo
định nghĩa 3) CheckBalanceAccount và CheckBalanceATM ở thời điểm bắt
đầu t và t ± ξns, với ξ = 5,10,15,…,50. Kết quả thực nghiệm cho thấy phương pháp đã
phát hiện được đủ các test đúng và sai (cột 4, Bảng 3) với 25 test đúng các vi phạm
về ràng buộc thời gian được phát hiện chính xác, Bảng 3.

Bảng 3. Kết quả thực nghiệm

Thành phần Ràng buộc thời gian thực thi (nano
seconds)

Số test
đúng/sai

Phát hiện
đúng/sai

Withdraw [10, 20], [20,30],…, [90,100] 25/25 25/25
CheckBalanceAccount [10, 20], [20,30],…, [90,100] 25/25 25/25
CheckBalanceATM [10, 20], [20,30],…, [90,100] 25/25 25/25
Return [10, 20], [20,30],…, [90,100] 25/25 25/25
GiveMoney [10, 20], [20,30],…, [90,100] 25/25 25/25

Ràng buộc thời gian của các thành phần tuần tự
Tổng thời gian thực hiện (≤) 50,100,150...,500 25/25 25/25

Ràng buộc thời gian giữa hai thành phần tương tranh
CheckBalanceAccount thời điểm bắt đầu t 25/25 25/25
CheckBalanceATM 5, 10, 15,…, 50 25/25 25/25

Qua các kết quả thực nghiệm cho thấy: (i) các aspect được sinh ra đúng so với các
đặc tả ràng buộc thời gian và nhất quán giữa biểu thức chính quy thời gian và biểu đồ
thời gian (ii) các aspect không làm thay đổi hành vi của chương trình gốc và (iii) đã phát
hiện được các vi phạm ràng buộc thời gian giữa các thành phần.

6. Kết luận
Nhiều hệ thống an toàn-bảo mật là các hệ thống thời gian thực, trong các hệ thống

này ràng buộc thời gian khi bị vi phạm sẽ gây ra các lỗi hệ thống. Các kỹ thuật truyền

thống như mô phỏng, kiểm thử thường chỉ ước lượng được thời gian thực thi của các
thành phần hệ thống với một độ tin cậy nào đó.

Để tăng cường sự tin cậy về ràng buộc thời gian trong các hệ thống thời gian thực.
Bài báo này đề xuất một phương pháp kiểm chứng sự tuân thủ giữa sự cài đặt của các
thành phần phần mềm so với đặc tả các ràng buộc thời gian. Phương pháp này sử dụng
biểu đồ thời gian (Timing Diagram) của UML và biểu thức chính quy thời gian (Timied
Regular Expression) để đặc tả các ràng buộc thời gian. Các mã aspect được tự động sinh
ra từ các đặc tả này sẽ đan tự động với mã của các thành phần để kiểm chứng sự tuân thủ
giữa sự cài đặt của các thành phần so với các đặc tả ràng buộc thời gian ở thời điểm thực
thi.

Chúng tôi đã cài đặt phương pháp này thành một công cụ kiểm chứng và chạy thử
nghiệm với ngôn ngữ lập trình Java thông qua một số lớp thư viện chuẩn của Java với
các bộ test khác nhau. Kết quả thử nghiệm ban đầu cho thấy phương pháp được đề xuất
hoàn toàn có thể phát hiện được vi phạm ràng buộc thời gian của các thành phần so với
đặc tả. Hạn chế của phương pháp này cũng như các phương pháp kiểm chứng động khác
là phải thực thi chương trình, vị phạm ràng buộc thời gian chỉ được phát hiện trong bước
kiểm thử, mã aspect được đan vào sẽ làm tăng kích thước của các chương trình.

Trong tương lai, chúng tôi sẽ kết hợp phương pháp này với phương pháp của Dymek
[18], Dymek[7] để tự động xây dựng các ca kiểm thử, và kết hợp với các phương pháp
kiểm chứng tĩnh khác như kiểm chứng mô hình. Tiến tới phát triển một phương pháp
kiểm chứng tự động toàn diện từ mức mô hình đến mức cài đặt.

Tài li ệu tham khảo

[1] Benveniste A, et.al. Safety critical embedded systems design: the sacres approach. In Formal

Techniques in Real-Time and Fault Tolerant systems, FTRTFT’98 school, Lyngby,
Denmark, September 1998.

[2] Binh T, et.al. Checking the Compliance of Timing Constraints in Software Applications,
Conf. on Knowledge and Systems Engineering, Hanoi, Vietnam, 2009.

[3] Binh T, et.al. Checking protocol-conformance in component models using Aspect oriented
programming. In Advances in Computer Science and Engineering, pages 150–155.
Actapress, 2009.

[4] Cheon Y and Perumandla A. Specifying and checking method call sequences in JML. In
Software Engineering Research and Practice, pages 511–516. CSREA Press, 2005.

[5] Cheon Y and Perumandla A. Specifying and checking method call sequences of Java
programs. Software Quality Control, 15(1):7–25, 2007.

[6] Colyer and Clement. Aspect-oriented programming with AspectJ. IBM Syst. J., 44(2):301–
308, 2005.

[7] Dymek D and Kotulski L. Estimation of system workload time characteristic using uml
timing diagrams. In Proceedings of the 2008 Third International Conference on
Dependability of Computer Systems, pages 9–14, Washington, DC, USA, 2008. IEEE
Computer Society.

[8] Filman R, et.al. Aspect-Oriented Software Development, Addison-Wesley, Boston, 2005.

[9] Guo H and Jin W. Compositional verification of timing constraints for embedded real-time
systems. In Proceedings of the 6th Conference on WSEAS International Conference on
Applied Computer Science, pages 570–575, USA, 2007.

[10] Hoang A, et.al. Checking interface interaction protocols using Aspect-oriented
programming. In Proceedings of the 2008 Sixth IEEE International Conference on Software
Engineering and Formal Methods, pages 382–386. IEEE Computer Society, 2008.

[11] Holzmann G. The SPIN Model Checker Primer and Reference Manual, Addison-Wesley,
2003.

[12] Jin Y. Formal verification of protocol properties of sequential Java programs. In
Proceedings of the 31st Annual International Computer Software and Applications
Conference, pages 475–482, Washington, DC, USA, 2007.

[13] Jones, C.B. Theorem proving and software engineering Software Engineering Journal
Digital Object Identifier, Jan 1988.

[14] Nixon P and Shi L. Concurrent semantics for structured design methods. In Proceedings
of the First IFIP TC10 International Workshop on Software Engineering for Parallel and
Distributed Systems, pages 158–169, London, UK, UK, 1996.

[15] Pieter J. Concepts, Algorithms, and Tools for Model Checking, Lecture Notes of the
Course Mechanised Validation of Parallel Systems, 1999.

[16] Thuan N, Binh T and Ha V. Coordinated Consensus Analysis of Multi-agent Systems
using Event-B, Conf. on Software Engineering and Formal Method, Hanoi, Vietnam,
November 2009.

[17] Visser W, et.al, Model Checking Programs, 15th IEEE International Conference on
Automated Software Engineering, 2000.

[18] Wegener J and Grochtmann M. Verifying timing constraints of real-time systems by
meansof evolutionary testing. Real-Time Syst., 275–298, 1998.

