
Ki ểm chứng sự tương tác giữa các thành phần
trong chương trình đa luồng sử dụng

lập trình hướng khía cạnh

Checking Interaction Protocol in Multi-threaded
Program using AOP

Tr ịnh Thanh Bình, Trương Anh Hoàng, Nguyễn Việt Hà

Abstract: Interaction protocol specifies allowed method

call sequences among classes or objects in a program. We

propose an approach to verify interaction protocol for

multi-thread programs. Our approach processes

interaction protocol specified by extended regular

expressions or protocol state machines in UML 2.0 and

generates aspect code to weave with the programs for

runtime verification. The aspect code will monitor the

execution of the program and check the conformance

between the programs and their specifications. We

implemented the approach as a tool for generating aspect

code in AspectJ and checking Java programs. The

experimental results show that our approach is convenient

to use in practice.

I. GIỚI THI ỆU

Phần mềm ngày càng đóng vai trò quan trọng trong xã

hội hiện đại. Tỷ trọng giá trị phần mềm trong các hệ thống

ngày càng lớn. Tuy nhiên, trong nhiều hệ thống, lỗi của

phần mềm gây ra các hậu quả đặc biệt nghiêm trọng,

không chỉ về mặt kinh tế mà còn về con người [16], đặc

biệt là các phần mềm điều khiển hệ thống và thiết bị giao

thông.

Các phương pháp kiểm chứng hình thức như chứng

minh định lý [8] và kiểm chứng mô hình [6, 7] đã đạt được

thành công nhất định trong kiểm chứng đặc tả phần mềm.

Cài đặt mã chương trình thường chỉ được thực hiện sau

khi các đặc tả này đã được kiểm chứng. Tuy nhiên, cài đặt

(chương trình) thường không tự sinh ra từ đặc tả nên nó có

thể vẫn có lỗi mặc dù thiết kế của nó đã được kiểm chứng

là đúng [16].

Để giải quyết các vấn đề này, chúng tôi đã đề xuất một

phương pháp kiểm chứng sự tuân thủ của cài đặt so với

đặc tả vào thời điểm thực thi [1,10]. Phương pháp này có

thể kiểm chứng được sự nhất quán giữa chương trình Java

và đặc tả giao thức tương tác của nó, các vi phạm được

phát hiện trong bước kiểm thử.

Bài báo này, chúng tôi mở rộng các nghiên cứu trong

[1,10] để kiểm chứng sự tuân thủ giữa cài đặt và đặc tả

giao thức tương tác trong các chương trình đa luồng sử

dụng lập trình hướng khía cạnh (Aspect-Oriented

Programming - AOP) [5]. Trong [10] chúng tôi đã sử dụng

máy trạng thái giao thức (Protocol State Machine – PSM)

của UML 2.0 để đặc tả giao thức tương tác. Việc sử dụng

biểu đồ PSM để đặc tả giao thức tương tác có ưu điểm là

trực quan. Tuy nhiên, các biểu đồ này còn nhiều hạn chế

như khả năng biểu diễn, và sự không tương thích giữa các

công cụ của UML khi xuất các biểu đồ này sang định dạng

XMI. Do đó, chúng tôi đã mở rộng biểu thức chính quy

(Regular Expression - RE) để đặc tả giao thức tương tác.

Mã aspect được tự động sinh ra từ các đặc tả này sẽ đan

với chương trình để kiểm chứng sự tuân thủ của nó so với

đặc tả giao thức tương tác.

Các phần còn lại của bài báo được cấu trúc như sau.

Mục II giới thiệu một số kiến thức cơ bản về AOP. Mục

III thảo luận một số nghiên cứu liên quan. Mục IV trình

bày các phương pháp đặc tả giao thức tương tác bằng máy

trạng thái giao thức, biểu thức chính quy mở rộng và

phương pháp kiểm chứng sự tuân thủ giữa chương trình và

đặc tả. Mục V chỉ ra một số kết quả thực nghiệm. Các kết

luận và hướng phát triển tiếp theo được trình bày trong

Mục VI.

II. L ẬP TRÌNH HƯỚNG KHÍA C ẠNH

Phương pháp lập trình hướng khía cạnh (Aspect-

Oriented Programming - AOP) [5,11] là phương pháp lập

trình phát triển trên tư duy tách biệt các mối quan tâm

khác nhau thành các môđun khác nhau. Ở đây, một mối

quan tâm thường không phải là một chức năng nghiệp vụ

cụ thể và có thể được đóng gói mà là một khía cạnh (thuộc

tính) chung mà nhiều môđun phần mềm trong cùng hệ

thống nên có, ví dụ như lưu vết thao tác và lỗi (error

logging).

Với AOP, chúng ta có thể cài đặt các mối quan tâm

chung cắt ngang hệ thống bằng các môđun đặc biệt gọi là

aspect thay vì dàn trải chúng trên các môđun nghiệp vụ

liên quan. Các aspect sau đó được kết hợp tự động với các

môđun nghiệp vụ khác bằng quá trình gọi là đan (weaving)

bằng bộ biên dịch đặc biệt.

AspectJ [3] là một công cụ AOP cho ngôn ngữ lập trình

Java. Trình biên dịch AspectJ sẽ đan xen chương trình

Java chính với các aspect thành các tệp mã bytecode chạy

trên chính máy ảo Java.

III. M ỘT SỐ NGHIÊN CỨU LIÊN QUAN

Đã có một vài phương pháp được đề xuất để kiểm

chứng sự tuân thủ giữa thực thi và đặc tả giao thức tương

tác được đề xuất.

Jin[15] đề xuất một phương pháp hình thức để kiểm

chứng tĩnh sự tuân thủ giữa cài đặt mã nguồn và đặc tả thứ

tự thực hiện của các phương thức (Method Call Sequence -

MCS) trong các chương trình Java tuần tự. Phương pháp

này sử dụng automat hữu hạn trang thái để đặc tả MCS,

các chương trình Java được biến đổi thành các văn phạm

phi ngữ cảnh (Context Free Grammar- CFG) sử dụng

công cụ Accent1. Ngôn ngữ sinh ra bởi ôtômát L(A) được so

sánh với ngôn ngữ sinh ra bởi CFG L(G), nếu L(G) ⊆ L(A) thì

chương trình Java tuân thủ theo đặc tả MCS. Ưu điểm của

phương pháp này là các vi phạm có thể được phát hiện

sớm, tại thời điểm phát triển hoặc biên dịch chương trình

mà không cần chạy thử chương trình. Tuy nhiên, phương

pháp này chưa kiểm chứng được các chương trình đa

luồng. Hơn nữa, phương pháp này cũng phải giải quyết

trọn vẹn bài toán bao phủ ngôn ngữ (Language Inclusion

Problem).

Trong các phương pháp về JML[9,13,14], MCS phải

được đặc tả dưới dạng tiền và hậu điều kiện được kết hợp

với phần thân của các phương thức trong chương trình như

các bất biến của vòng lặp, hay tập các câu lệnh. Các tiền

và hậu điều kiện này được viết dưới một dạng chuẩn để có

thể biên dịch và chạy đan cùng với chương trình nguồn.

Các vi phạm sẽ được phát hiện vào thời điểm chạy chương

trình. Với các phương pháp này thì người lập trình phải

đặc tả rải rác mã kiểm tra ở nhiều điểm trong chương

trình. Do đó sẽ khó kiểm soát, không đặc tả độc lập, tách

biệt từng đặc tả MCS được.

Yoonsik và Perumandla [14] mở rộng ngôn ngữ đặc tả

và trình biên dịch JML để biểu diễn MCS bằng biểu thức

chính quy. Các biểu thức chính quy này được biên dịch

thành mã thực thi và đan xen với mã nguồn của chương

trình gốc để kiểm chứng sự tuân thủ giữa cài đặt so với

đặc tả MSC. Các hành vi của chương trình gốc sẽ không bị

thay đổi ngoại trừ thời gian thực thi và kích thước.

Deline và Fahndrich [12] đề xuất phương pháp kiểm

chứng vào thời điểm thực thi sự tuân thủ giữa cài đặt và

1 http://accent.compilertools.net/Accent.html

đặc tả MCS. Phương pháp này sử dụng máy trạng thái để

đặc tả MCS. Đặc tả MCS sau đó được biên dịch sang mã

nguồn và đan xen với mã nguồn chương trình để kiểm

chứng động sự tuân thủ của cài đặt so với đặc tả MCS. Các

mệnh đề tiền và hậu điều kiện của các phương thức trong

MSC cũng được đặc tả và kiểm chứng.

Các phương pháp nói trên đều chưa kiểm chứng được

các chương trình đa luồng, giao thức được kiểm chứng

đơn thuần chỉ là thứ tự thực hiện của các phương thức.

Trong bài báo này chúng tôi đề xuất một cách tiếp cận mới

trong việc kiểm chứng sự nhất quán giữa cài đặt so với

thiết kế ở thời điểm thực thi. Trong đó các phương thức

trong giao thức có thể được thực hiện song song với nhau

và phải thỏa mãn các mệnh đề tiền và hậu điều kiện.

IV. PHƯƠNG PHÁP KIỂM CHỨNG SỰ TUÂN THỦ
GIỮA THỰC THI VÀ ĐẶC TẢ GIAO TH ỨC
TƯƠNG TÁC

Giả sử một giao thức tương tác của một hàng đợi tương

tranh (Concurrent Queue - CQ) với bốn phương thức được

cài đặt cho phép gọi cùng lúc bởi một luồng cung cấp

Producer đẩy các phần tử vào hàng đợi, và nhiều luồng

Consumer cùng thao tác với các phần tử trong hàng đợi (

Hình 1). Tại trạng thái trừu tượng OPENED, các luồng

Consumer có thể gọi các phương thức enqueue() hoặc

dequeue() để bổ sung hoặc loại bỏ các phần tử của hàng

đợi. Khi luồng Producer gọi phương thức close() để chuyển

sang trạng thái trừu tượng CLOSED thì các phần tử khác sẽ

không được bổ sung hoặc loại bỏ từ hàng đợi.

Hình 1. Giao thức tương tác của hàng đợi tương
tranh.

Khi đó bài toán kiểm chứng sự tuân thủ giữa thực thi

và đặc tả giao thức tương tác trong các chương trình đa

luồng được đặc tả như sau:

1. Thứ tự thực hiện của các phương thức trong chương

trình phải tuân thủ theo các cung trong Hình 1 là một

đường đi từ trạng thái đầu đến trạng thái kết thúc.

Trong đó, hai phương thức dequeue(Q,x) và

enqueue(Q,x) có thể được gọi đồng thời bởi các luồng

khác nhau.

2. Khi phương thức enqueue(Q,x) được thực hiện thì tiền

điều kiện là hàng đợi chưa đầy và hậu điều kiện là x

phải được đẩy vào hàng đợi. Với phương thức

dequeue(Q,x) thì tiền điều kiện là x thuộc hàng đợi và

hậu điều kiện là x được loại bỏ khỏi hàng đợi.

Giả sử đặc tả thiết kế giao thức này là đúng đắn. Tuy

nhiên, cài đặt mã nguồn chương trình có thể vi phạm các

đặc tả thiết kế của giao thức. Thông thường các vi phạm

này khó được phát hiện trong bước kiểm thử bằng các bộ

dữ liệu đầu vào và đầu ra.

Do đó chúng tôi đã đề xuất phương pháp kiểm chứng

sự tuân thủ giữa thực thi và đặc tả giao thức tương tác

trong các chương trình đa luồng như sau (Hình 2).

1. Sử dụng biểu thức chính quy mở rộng (RE) hoặc máy

trạng thái giao thức (PSM) để đặc tả giao thức tương

tác (IP),

2. Người lập trình cài đặt các ứng dụng dựa trên các đặc

tả IP,

3. Tự động sinh các mã aspect từ các đặc tả IP,

4. Các mã aspect sinh ra được tự động đan với mã của

các chương trình ứng dụng để kiểm chứng động sự

tuân thủ giữa thực thi và đặc tả IP.

Kết quả thực nghiệm trong Mục V cho thấy khi các

chương trình được thực hiện thì các mã đan xen vào có thể

phát hiện được chính xác vị trí của các vi phạm nếu có của

chương trình với đặc tả IP. Trong khi đó, các hành vi của

OPENED
close(Q)

open(Q)

[Pre:Q.Full = False]

enqueue(Q,x) [Post: Q.x = True]

CLOSED

[Pre: Q.x = True]

dequeue(Q,x) [Post : Q.x =

False]

chương trình gốc sẽ không bị thay đổi ngoại trừ thời gian

thực hiện và kích thước của chương trình.

Hình 2. Sơ đồ hoạt động của hệ thống.

1. Đặc tả giao thức tương tác

1.1. Biểu thức chính quy mở rộng cho biểu diễn giao

thức tương tác

RE được mở rộng để biểu diễn IP độc lập với mã

nguồn để sinh ra mã aspect được chúng tôi định nghĩa như

sau.

Định nghĩa 1 (Biểu thức chính quy mở rộng).
Regular Expression - RE là một bộ năm RE = <M, O, S, Pre,

Post>. Trong đó,

1. M = {m1,m2,…,mn} là bảng chữ cái Sigma gồm một tập

hữu hạn các phương thức,

2. O = {o1,o2,…,op} là tập hữu hạn các đối tượng,

3. Pre, Post là tập hữu hạn các tiền và hậu điều kiện,

4. S = {s1,s2,…,sk} là tập hạn các biểu thức biểu diễn các

phương thức,

5. s ::= [Pre]o.m[Post]|s->s|s|s| s||s |s*|s+|(s). Trong đó: m ∈ M,

s ∈ S, và o ∈ O. s→s là sự kết hợp của hai hoặc nhiều

biểu thức tuần tự, s|s: phép hoặc, s||s: phép song song,

s*: không hoặc nhiều phép lặp, s+: một hoặc nhiều phép

lặp, (s): biểu thức kết hợp.

Ví dụ RE:

[p1]o1.m1()[q1]→([p2]o2.m2()[q2]|[p3]o3.m3()[q3])
+→(o1.m1()||o4.m4())

→[p5]o5.m5()[q5] biểu diễn một IP. Trong đó, nếu tiền điều

kiện p1 được thỏa mãn thì phương thức o1.m1() được thực

hiện trước và thỏa mãn hậu điều kiện q1, sau đó là một

hoặc nhiều lần thực hiện phương thức o2.m2() hoặc o3.m3()

với các tiền điều kiện p2, p3 và hậu điều kiện q2, q3. Tiếp

theo là các phương thức o1.m1() và o4.m4() được thực hiện

song song. Cuối cùng là o5.m5() với các điều kiện là p5 và

q5.

1.2. Biểu đồ PSM cho biểu diễn giao thức tương tác

Biểu đồ PSM trong UML2.0 biểu diễn thứ tự thực hiện

của các phương thức cùng với ràng buộc về các mệnh đề

tiền và hậu điều kiện được sử dụng để đặc tả IP. Chúng tôi

định nghĩa hình thức như sau:

Định nghĩa 2 (Máy trạng thái giao thức). Protocol

State Machine - PSM là một bộ bẩy thành phần PSM = <S;

σ; M; Pre; Post; s0;f>. Trong đó, S là tập hữu hạn các trạng

thái, M là tập các phương thức, Pre, Post là tập các tiền điệu

kiện và hậu điều kiện. σ ⊆ S×Pre×M×Post→S là hàm chuyển

trạng thái. s0,f∈S lần lượt là các trạng thái đầu và kết thúc.

Hình 3. Biểu đồ PSM cho một giao thức tương tác.

Hình 3 biểu diễn biểu đồ PSM cho một IP, thứ tự thực

hiện của các phương thức được thể hiện bằng các cung

trong biểu đồ. Trong đó:

• S={1,2,3,4}∪{s0,f},

• Pre={P1..P7};Post={Q1..Q7};M={M1..M7},

• σ={s0P1M1Q1→1;1P2M2Q2→2;…;3P7M7Q7→f; 4P6M6Q6→f}.

[P1]
M1(..) [Q1]

{ PSM Diagram}

1 2

[P2]
M2(..) [Q2]

3

4
[P3]
 M3(..) [Q3]

[P4]
M4(..) [Q4]

[P5]
M5(..) [Q5]

[P7]
M7(..) [Q7]

[P6]
M6(..) [Q6]

Cài đặt Chương trình Đặc tả
(PSM, RE)

Mã aspect

Bộ sinh mã
Biên dịch

Đan xen mã

Chạy kiểm thử
và phát hiện lỗi

2. Sinh mã aspect

Mục này trình bày thuật toán tự động sinh mã kiểm

chứng aspect từ đặc tả IP. Với đặc tả dạng PSM chúng tôi

sinh ra đồ thị có hướng để biểu diễn IP bằng thuật toán

trong Bảng 1. Với đặc tả RE mở rộng được đưa về dạng

RE chuẩn bằng phép biến đổi mỗi s=[Pre]o.m[Post] thành

một ký tự a∈∑ (một ký tự thuộc bảng chữ cái của biểu thức

RE chuẩn). Từ dạng RE chuẩn chúng tôi chuyển sang máy

trạng thái hữu hạn (Finite State Machine-FSM) bằng thuật

toán trong [2]. Mã aspect sau đó được sinh ra tự động từ

các đặc tả PSM và FSM.

Bảng 1. Sinh đồ thị biểu diễn IP từ đặc tả PSM

Quá trình tự động sinh mã aspect gồm ba bước chính sau.

Bước 1. Khởi tạo mẫu aspect sẽ được sinh ra từ đặc tả

gao thức tương tác như sau.

static final String aspectTemplate =

"import org.aspectj.lang.JoinPoint;\n" +

"public aspect ProtocolCheck {\n" + "#CONSTS#\n" +

"#ADVICES#\n\n" + " void log(JoinPoint jp); \n";

Trong aspect mẫu trên xâu “#CONST#” sẽ được thay thế

bằng các trạng thái của mỗi phương thức trong giao thức.

Xâu “# ADVICES#” sẽ được thay thế bằng các điều kiện

kiểm tra trước và sau (pointcut) của phương thức khi nó

được thực hiện. Phương thức log(JoinPoint jp) sẽ thông báo

các phương thức và vị trí của nó khi vi phạm đặc tả.

Bước 2. Khởi tạo mẫu pointcut sẽ được sinh ra từ đặc

tả gao thức tương tác như sau.

static String pointcutTemplate =

"\n" +" pointcut pc_#SIG_NM#(#CLS_NM# o):\n"+" target(o)\n"+

" &&call(#SIG#);\n"+" before(#CLS_NM#

o):pc_#SIG_NM#(o){\n"+

" if (!(#PRE_COND#))\n" +" log(thisJoinPoint);\n"+" }\n"+

" after(#CLS_NM# o):pc_#SIG_NM#(o) {\n"+" o.state =

ST_#SIG_NM#;\n"+”#POST_COND# "+” }\n";

Trong pointcut mẫu trên xâu “#SIG_NM#” sẽ được thay

thế bằng tên của mỗi phương thức trong giao thức, “#

CLS_NM#” sẽ được thay thế bằng tên của lớp tương ứng.

Xâu “#PRE_COND#” và ”#POST_COND# sẽ được thay thế

bằng các biểu thức tiền và hậu điều kiện.

Bước 3. Các biểu thức tiền và hậu điều kiện được chia

làm hai loại. Loại một kiểm tra thứ tự thực hiện của các

phương thức trong giao thức. Loại hai đặc tả các điều kiện

trước và sau của mỗi phương thức phải thỏa mãn khi nó

được thực hiện.

Bước 3.1. Với biểu thức tiền và hậu điều kiện loại một

thì mỗi phương thức trong giao thức chúng tôi tự động

sinh ra một biến trạng thái có tiền tố là ST_, theo sau là tên

các phương thức. Mỗi khi phương thức được thực hiện thì

biến trạng thái được gán bằng trạng thái của phương thức

đó. Hàm sinh biểu thức tiền điều kiện được cài đặt như

sau.

static String genCondition(Entry<String, Set<String>> e,

Set<String> entrySigs) {

 String src = "";

Đầu vào: đặc tả PSM

Đầu ra: Đồ thị G = <V, M> đặc tả giao thức. Trong đó:

• V là tập các đỉnh của đồ thị (được biểu diễn bằng tập các

số nguyên),

• M là tập các cung của đồ thị, M=

{[Pre1]m1[Post1],[Pre2]m2[Post2],..., [Pren]mn[Postn]} là tập các

phương thức với các tiền và hậu điều kiện thuộc giao

thức,

• Các cung của đồ thị được gán nhãn là các phương thức

thuộc M, các đỉnh được gán nhãn là các số nguyên. Các

cung này thể hiện mối quan hệ phụ thuộc giữa các

phương thức trong IP.

1. Tạo hàm song ánh µ: M → {1..|M|},|M| lực lượng của tập

M, các số nguyên này là tập các đỉnh của đồ thị.

2. Tạo một đỉnh vào và gán nhãn bằng 0, với mỗi m thuộc

M0 (tập các đỉnh vào của máy trạng thái (ο → M0) tạo

một cung từ đỉnh vào đến đỉnh µ(m), gán nhãn là

[prem]m[postm].

3. Với mỗi cung dạng m → m’ thuộc PSM tạo một nút µ(m)

tới µ(m’) và gán nhãn là {prem’}m’{postm’}.

4. Tạo một đỉnh kết thúc, với mỗi m → Θ thuộc đỉnh kết

thúc trong PSM, tạo một cung từ µ(m) tới đỉnh kết thúc

vừa tạo.

 if (entrySigs.contains(e.getKey()))

 src += "o.state==ST_START";

 for (String s: e.getValue()){

 if (s.equals("START")) continue;

 if (src.length() > 0) src += "";

 src += "o.state==ST_" +getMethodName(s);

 }

 return src;

}

Bước 3.2. Với các biểu thức tiền và hậu điều kiện loại

hai, chúng tôi giới hạn được đặc tả dưới dạng các biểu

thức logic của Java (bước 2 và 3, thuật toán trong Bảng

2). Các biểu thức này được đọc trực tiếp từ đặc tả và đưa

vào pointcut mẫu trong bước 2.

3. Đan mã aspect

AspectJ cho phép đan xen mã aspect với các chương

trình Java ở ba mức khác nhau: mức mã nguồn, mã

bytecode và tại thời điểm nạp chương trình khi chương

trình gốc chuẩn bị được thực hiện.

Đan ở mức mã nguồn, AspectJ sẽ nạp các mã aspect và

Java ở mức mã nguồn (.aj và .java), sau đó thực hiện biên

dịch để sinh ra mã đã được đan xen bytecode, dạng .class.

Đan xen ở mức mã bytecode, AspectJ sẽ dịch lại và sinh

mã dạng .class từ các các mã aspect và Java đã được biên

dịch ở dạng (.class). Đan xen tại thời điểm nạp chương

trình (load time weaving), các mã của aspect và Java dạng

.class được cung cấp cho máy ảo Java (JVM). Khi JVM

nạp chương trình để chạy, bộ nạp lớp của AspectJ sẽ thực

hiện đan mã và chạy chương trình.

Với việc đan xen ở mức mã bytecode và tại thời điểm

nạp chương trình thì phương pháp này có thể được sử

dụng mà không yêu cầu phải có mã nguồn. Khi thay đổi

đặc tả thì mới phải sinh và biên dịch lại mã aspect.

V. THỰC NGHIỆM

Chúng tôi đã cài đặt phương pháp này thành một công

cụ kiểm chứng PVG (Protocol Verification Generator -

PVG). Đầu vào của công cụ PVG là các FSM hoặc đồ thị

có hướng biểu diễn giao thức tương tác. Đầu ra là các mã

kiểm chứng aspect của AspectJ.

Thực nghiệm được tiến hành trên lớp StreamBuffer với

ba phương thức open(), read() và close(). Giao thức tương

tác được đặc tả bằng biểu thức chính quy open()->(read())*-

>close() mô tả phương thức open() được thực hiện trước sau

đó là một hoặc nhiều lần gọi phương thức read(), cuối cùng

là phương thức close() được gọi để giải phóng tài nguyên.

Bảng 2 minh họa một chương trình được cài đặt tuân

thủ theo đúng giao thức bên trái và sai bên phải (do

phương thức close(..) không được gọi). Các chương trình

đa luồng này được xây dựng để tính tổng các số nguyên

trong file. Thực hiện kiểm thử các chương trình trên với

các input/output khác nhau, các kết quả cho thấy cả hai

chương trình đều cho kết quả đúng như nhau. Tuy nhiên

khi đan mã của các chương trình trên với mã aspect được

sinh ra từ công cụ PVG chúng tôi đã phát hiện được vi

phạm ràng buộc của chương trình được cài đặt sai bên

phải.

Bảng 2– Chương trình được cài đặt đúng – sai
public class Mytest extends

Thread

{

 private int num;

 public void run() {

 try {

 InputStream f = new

FileInputStream("file.txt");

//open()

 int c, s=0;

 while ((c=f.read())!=-1){

System.out.print((char)c)

 s=s+c;

 }

 f.close();

 System.out.print(s);

 }catch(Exception e) {

 e.printStackTrace(); }

 }

 public Mytest (int n)

 {

 super();

 num=n;

 }

public static void main(String[]

args) {

 Mytest t1=new Mytest (1);

 t1.start();

 }}

public class Mytest extends Thread

{

 private int num;

 public void run() {

 try {

 InputStream f = new

FileInputStream("file.txt"); //open()

 int c, s=0;

 while ((c=f.read())!=-1){

 System.out.print((char)c)

 s=s+c;

 }

 // phương thức f.close() không

dược gọi

 System.out.print(s);

 }catch(Exception e) {

 e.printStackTrace(); }

 }

 public Mytest (int n) {

 super();

 num=n;

 }

public static void main(String[] args)

{

 Mytest t1=new Mytest (1);

 t1.start();

 }

}

Bên cạnh giao thức này, chúng tôi cũng đã thử nghiệm

với các giao thức khác trong [1,4,12,13,15]. Các giao thức

này được đặc tả bằng các RE và PSM. Với mỗi đặc tả này

chúng tôi sử dụng công cụ PVG để sinh các mã aspect của

AspectJ và đan tự động với các chương trình Java mô

phỏng để kiểm chứng sự tuân thủ giữa sự cài đặt đối với

đặc tả giao thức. Các kết quả thực nghiệm trong Bảng 3.

Trong đó, mỗi lớp trong cột 1 bên trái của Bảng 3

tương ứng với số các phương thức của giao thức trong cột

2. Chúng tôi xây dựng chương trình mô phỏng cho từng

lớp với số các ca kiểm thử đúng và sai khác nhau trong cột

3, kết qủa phát hiện trong cột 4. Với các ca kiểm thử đúng

thì các lớp được cài đặt tuân thủ đúng đặc tả giao thức.

Ngược lại, với các ca kiểm thử sai thì sẽ có ít nhất một

phương thức thực hiện không đúng đặc tả (các vi phạm về

thứ tự thực hiện, tiền và hậu điều kiện). Các giao thức đều

được đặc tả dưới cả hai dạng RE và PSM.

Các chương trình mô phỏng trước và sau khi đan mã

AspectJ được chạy 20 lần với mỗi lần chạy thì số luồng

được tăng dần từ 1 đến 20 luồng. Để đánh giá thời gian

thực hiện của các chương trình trước khi đan mã aspect so

với thời gian thực hiện sau khi đan mã chúng tôi tính tỷ lệ

gia tăng thời gian trung bình bằng công thức sau:

1 100%.

n

i i
i

ts tt

n
τ =

−
= ×
∑

Trong đó, tsi và tti lần lượt là thời gian thực hiện của

chương trình trước và sau khi đan mã aspect ở lượt chạy

thứ i, n là tổng số lượt chạy của chương trình trước và sau

khi đan mã. Thời gian thực hiện của các chương trình

trước và sau khi đan mã được tính bằng hiệu của thời gian

hiện tại của hệ thống trước khi chương trình được thực

hiện với thời gian hiện tại của hệ thống sau khi chương

trình thực hiện xong. Kết quả thực nghiệm trong Bảng 3.

Đối với các giao thức mô tả trong cột 1, Bảng 3 thì kết

quả thực nghiệm cho thấy: (i) các aspect được sinh ra đúng

so với các đặc tả giao thức, nhất quán giữa biểu thức chính

quy và máy trạng thái giao thức, (ii) các aspect không làm

thay đổi hành vi của chương trình gốc ngoại trừ thời gian

chạy và kích thước của chương trình, (iii) đã phát hiện

được các vi phạm tương tác (thứ tự thực hiện), tiền và hậu

điều kiện của các phương thức được cài đặt mà không tuân

thủ theo đặc tả IP, (iv) thời gian chạy sau khi đan mã

aspect sẽ tăng tỷ lệ thuận với số luồng trong chương trình

và số phương thức được mô tả trong giao thức.

Bảng 3- Kết quả thực nghiệm

Lớp (.java)

Số
 p

hư
ơn

g

th
ức

Số
 te

st

đú
n

g
/s

ai

P
h

át
 h

iện

đú
n

g
/s

ai

T
ỷ

lệ
 g

ia

tă
n

g
 th
ời

g

ia
n

 (
%

s)

Applet 5 10/20 10/20 0.915
StreamReader 6 5/15 5/15 0.923

ReadWrite 4 6/10 6/10 0.974
Iterator 3 2/3 2/3 0.533
Stack 5 2/5 2/5 0.915

LinkedList 9 5/15 5/15 1.542
ConcurrentQueue 4 3/5 3/5 0.974

Roster 2 2/2 2/2 0.323

VI. KẾT LUẬN

Giao thức tương tác đặc tả các ràng buộc về thứ tự thực

hiện của các phương thức trong các lớp hoặc các thành

phần phần mềm, các biểu thức tiền và hậu điều kiện của

mỗi phương thức khi nó được thực hiện. Sự vi phạm giữa

cài đặt và đặc tả giao thức này tại thời điểm thực thi có thể

gây ra các lỗi hệ thống. Tuy nhiên, thiết kế giao diện của

thành phần phần mềm chỉ đặc tả các ràng buộc về kiểu dữ

liệu và giá trị trả về của mỗi phương thức. Hơn nữa, các

trình biên dịch cũng không kiểm tra các ràng buộc của

giao thức này.

Trong bài báo này, chúng tôi đã đề xuất một phương

pháp kiểm chứng sự tuân thủ giữa thực thi và đặc tả giao

thức tương tác sử dụng lập trình hướng khía cạnh. Phương

pháp này sử dụng máy trạng thái giao thức của UML và

biểu thức chính quy để đặc tả giao thức tương tác. Các mã

aspect được tự động sinh ra từ các đặc tả này sẽ đan tự

động với mã của các ứng dụng để kiểm chứng sự tuân thủ

giữa thực thi và đặc tả giao thức tương tác.

Chúng tôi đã cài đặt phương pháp này thành một công

cụ kiểm chứng và chạy thử nghiệm với ngôn ngữ lập trình

Java thông qua một số giao thức thực tế. Kết quả thực

nghiệm ban đầu cho thấy phương pháp được đề xuất có thể

phát hiện được các vi phạm ràng buộc thiết kế của giao

thức tương tác trong các chương trình đa luồng. Hạn chế

của phương pháp này cũng như các phương pháp kiểm

chứng động khác là phải thực thi chương trình, vị phạm

chỉ được phát hiện trong bước kiểm thử. Hơn nữa, mã

aspect được đan vào sẽ làm tăng kích thước và thời gian

thực thi của các chương trình.

Trong tương lai, chúng tôi sẽ tiếp tục mở rộng phương

pháp này để kiểm chứng các bất biến đối tượng (object

invariants), các ràng buộc thời gian (timing constraints),

và các ràng buộc khác trong các chương trình đa luồng.

Tiến tới phát triển môi trường kiểm chứng hoàn thiện dựa

trên lập trình hướng khía cạnh để kiểm chứng sự tuân thủ

giữa thiết kế với cài đặt mã nguồn chương trình.

TÀI LI ỆU THAM KH ẢO

1. Anh-Hoang Truong, et.al. Checking interface
interaction protocols using Aspect-oriented
programming. In SEFM’08: Proceedings of the Sixth
IEEE International Conference on Software
Engineering and Formal Methods. IEEE Computer
Society, pages 382–386, 2008.

2. Ayesha Hanif, et.al. Regular Expression to Finite
State Machine. Journal of Applied Sciences Research,
pages 1359-1362, 2006.

3. Colyer and A. Clement. Aspect-oriented
programming with AspectJ. IBM Syst. J., pages 301–
308, 2005.

4. Cl´ement Hurlin Specifying and Checking Protocols
of Multithreaded Classes. Proceedings of the ACM
symposium on Applied Computing, Pages 587-592,
2009.

5. Filman R. E., et.al. Aspect-Oriented Software
Development. Addison-Wesley, Boston, 2005.

6. Gerard J.Holzmann. The SPIN Model Checker Primer
and Reference Manual. Addison-Wesley, 2003.

7. Joost-Pieter Katoen, Concepts, Algorithms, and Tools
for Model Checking, Lecture Notes of the Course
Mechanised Validation of Parallel Systems, 1999.

8. Jones, C.B. Theorem proving and software
engineering. Software Engineering Journal Vol.3,
Digital Object Identifier, 1998.

9. L. Burdy, Y. Cheon. An overview of JML tools and
applications. Software Tools for Technology Transfer,
pages 212–232, 2005.

10. Thanh-Binh Trinh, Anh-Hoang Truong, and Viet-Ha
Nguyen. Checking protocol-conformance in
component models using Aspect oriented
programming. In Advances in Computer Science and
Engineering, Actapress, pages 150–155, 2009.

11. Reade, Chris. Elements of Functional Programming.
Addison-Wesley Longman Publishing Co, Boston,
USA, 1989.

12. R. DeLine and M. Fahndrich. The fugue protocol
checker: Is your software baroque. Technical Report
MSR-TR-2004-07, Microsoft Research, 2004.

13. Y. Cheon and A. Perumandla. Specifying and
checking method call sequences in JML. Software
Engineering Research and Practice, CSREA Press,
pages 511–516, 2005.

14. Y. Cheon and A. Perumandla. Specifying and
checking method call sequences of Java programs.
Software Quality Control, pages 7–25, 2007.

15. Y. Jin. Formal verification of protocol properties of
sequential Java programs. In COMPSAC’07: Proc of
the 31st Annual International Computer Software and
Applications Conference, Washington, DC, USA,.
IEEE CS, Vol. 1, pages 475–482, 2007.

16. Willem Visser, et.al. Model Checking Programs,
15th IEEE International Conference on Automated
Software Engineering (ASE'00), 2000.

