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Abstract: Interaction protocol specifies allowed method 

call sequences among classes or objects in a program. We 

propose an approach to verify interaction protocol for 

multi-thread programs. Our approach processes 

interaction protocol specified by extended regular 

expressions or protocol state machines in UML 2.0 and 

generates aspect code to weave with the programs for 

runtime verification. The aspect code will monitor the 

execution of the program and check the conformance 

between the programs and their specifications. We 

implemented the approach as a tool for generating aspect 

code in AspectJ and checking Java programs. The 

experimental results show that our approach is convenient 

to use in practice. 

I. GIỚI THI ỆU 

Phần mềm ngày càng đóng vai trò quan trọng trong xã 

hội hiện đại. Tỷ trọng giá trị phần mềm trong các hệ thống 

ngày càng lớn. Tuy nhiên, trong nhiều hệ thống, lỗi của 

phần mềm gây ra các hậu quả đặc biệt nghiêm trọng, 

không chỉ về mặt kinh tế mà còn về con người [16], đặc 

biệt là các phần mềm điều khiển hệ thống và thiết bị giao 

thông.  

Các phương pháp kiểm chứng hình thức như chứng 

minh định lý [8] và kiểm chứng mô hình [6, 7] đã đạt được 

thành công nhất định trong kiểm chứng đặc tả phần mềm. 

Cài đặt mã chương trình thường chỉ được thực hiện sau 

khi các đặc tả này đã được kiểm chứng. Tuy nhiên, cài đặt 

(chương trình) thường không tự sinh ra từ đặc tả nên nó có 

thể vẫn có lỗi mặc dù thiết kế của nó đã được kiểm chứng 

là đúng [16]. 

Để giải quyết các vấn đề này, chúng tôi đã đề xuất một 

phương pháp kiểm chứng sự tuân thủ của cài đặt so với 

đặc tả vào thời điểm thực thi [1,10]. Phương pháp này có 

thể kiểm chứng được sự nhất quán giữa chương trình Java 

và đặc tả giao thức tương tác của nó, các vi phạm được 

phát hiện trong bước kiểm thử.  

Bài báo này, chúng tôi mở rộng các nghiên cứu trong 

[1,10] để kiểm chứng sự tuân thủ giữa cài đặt và đặc tả 

giao thức tương tác trong các chương trình đa luồng sử 

dụng lập trình hướng khía cạnh (Aspect-Oriented 

Programming - AOP) [5]. Trong [10] chúng tôi đã sử dụng 

máy trạng thái giao thức (Protocol State Machine – PSM) 

của UML 2.0 để đặc tả giao thức tương tác. Việc sử dụng 

biểu đồ PSM để đặc tả giao thức tương tác có ưu điểm là 

trực quan. Tuy nhiên, các biểu đồ này còn nhiều hạn chế 

như khả năng biểu diễn, và sự không tương thích giữa các 

công cụ của UML khi xuất các biểu đồ này sang định dạng 

XMI. Do đó, chúng tôi đã mở rộng biểu thức chính quy 

(Regular Expression - RE) để đặc tả giao thức tương tác. 

Mã aspect được tự động sinh ra từ các đặc tả này sẽ đan 



với chương trình để kiểm chứng sự tuân thủ của nó so với 

đặc tả giao thức tương tác.  

Các phần còn lại của bài báo được cấu trúc như sau. 

Mục II giới thiệu một số kiến thức cơ bản về AOP. Mục 

III thảo luận một số nghiên cứu liên quan. Mục IV trình 

bày các phương pháp đặc tả giao thức tương tác bằng máy 

trạng thái giao thức, biểu thức chính quy mở rộng và 

phương pháp kiểm chứng sự tuân thủ giữa chương trình và 

đặc tả. Mục V chỉ ra một số kết quả thực nghiệm. Các kết 

luận và hướng phát triển tiếp theo được trình bày trong 

Mục VI. 

II. L ẬP TRÌNH HƯỚNG KHÍA C ẠNH 

Phương pháp lập trình hướng khía cạnh (Aspect-

Oriented Programming - AOP) [5,11] là phương pháp lập 

trình phát triển trên tư duy tách biệt các mối quan tâm 

khác nhau thành các môđun khác nhau. Ở đây, một mối 

quan tâm thường không phải là một chức năng nghiệp vụ 

cụ thể và có thể được đóng gói mà là một khía cạnh (thuộc 

tính) chung mà nhiều môđun phần mềm trong cùng hệ 

thống nên có, ví dụ như lưu vết thao tác và lỗi (error 

logging). 

Với AOP, chúng ta có thể cài đặt các mối quan tâm 

chung cắt ngang hệ thống bằng các môđun đặc biệt gọi là 

aspect thay vì dàn trải chúng trên các môđun nghiệp vụ 

liên quan. Các aspect sau đó được kết hợp tự động với các 

môđun nghiệp vụ khác bằng quá trình gọi là đan (weaving) 

bằng bộ biên dịch đặc biệt.  

AspectJ [3] là một công cụ AOP cho ngôn ngữ lập trình 

Java. Trình biên dịch AspectJ sẽ đan xen chương trình 

Java chính với các aspect thành các tệp mã bytecode chạy 

trên chính máy ảo Java.  

III.  M ỘT SỐ NGHIÊN CỨU LIÊN QUAN 

Đã có một vài phương pháp được đề xuất để kiểm 

chứng sự tuân thủ giữa thực thi và đặc tả giao thức tương 

tác được đề xuất.   

Jin[15] đề xuất một phương pháp hình thức để kiểm 

chứng tĩnh sự tuân thủ giữa cài đặt mã nguồn và đặc tả thứ 

tự thực hiện của các phương thức (Method Call Sequence - 

MCS) trong các chương trình Java tuần tự. Phương pháp 

này sử dụng automat hữu hạn trang thái để đặc tả MCS, 

các chương trình Java được biến đổi thành các văn phạm 

phi ngữ cảnh (Context Free Grammar- CFG) sử dụng 

công cụ Accent1. Ngôn ngữ sinh ra bởi ôtômát L(A) được so 

sánh với ngôn ngữ sinh ra bởi CFG L(G), nếu L(G) ⊆ L(A) thì 

chương trình Java tuân thủ theo đặc tả MCS. Ưu điểm của 

phương pháp này là các vi phạm có thể được phát hiện 

sớm, tại thời điểm phát triển hoặc biên dịch chương trình 

mà không cần chạy thử chương trình. Tuy nhiên, phương 

pháp này chưa kiểm chứng được các chương trình đa 

luồng. Hơn nữa, phương pháp này cũng phải giải quyết 

trọn vẹn bài toán bao phủ ngôn ngữ (Language Inclusion 

Problem).    

Trong các phương pháp về JML[9,13,14], MCS phải 

được đặc tả dưới dạng tiền và hậu điều kiện được kết hợp 

với phần thân của các phương thức trong chương trình như 

các bất biến của vòng lặp, hay tập các câu lệnh. Các tiền 

và hậu điều kiện này được viết dưới một dạng chuẩn để có 

thể biên dịch và chạy đan cùng với chương trình nguồn. 

Các vi phạm sẽ được phát hiện vào thời điểm chạy chương 

trình. Với các phương pháp này thì người lập trình phải 

đặc tả rải rác mã kiểm tra ở nhiều điểm trong chương 

trình. Do đó sẽ khó kiểm soát, không đặc tả độc lập, tách 

biệt từng đặc tả MCS được. 

Yoonsik và Perumandla [14] mở rộng ngôn ngữ đặc tả 

và trình biên dịch JML để biểu diễn MCS bằng biểu thức 

chính quy. Các biểu thức chính quy này được biên dịch 

thành mã thực thi và đan xen với mã nguồn của chương 

trình gốc để kiểm chứng sự tuân thủ giữa cài đặt so với 

đặc tả MSC. Các hành vi của chương trình gốc sẽ không bị 

thay đổi ngoại trừ thời gian thực thi và kích thước. 

Deline và Fahndrich [12] đề xuất phương pháp kiểm 

chứng vào thời điểm thực thi sự tuân thủ giữa cài đặt và 
                                                 
1 http://accent.compilertools.net/Accent.html 



đặc tả MCS. Phương pháp này sử dụng máy trạng thái để 

đặc tả MCS. Đặc tả MCS sau đó được biên dịch sang mã 

nguồn và đan xen với mã nguồn chương trình để kiểm 

chứng động sự tuân thủ của cài đặt so với đặc tả MCS. Các 

mệnh đề tiền và hậu điều kiện của các phương thức trong 

MSC cũng được đặc tả và kiểm chứng. 

Các phương pháp nói trên đều chưa kiểm chứng được 

các chương trình đa luồng, giao thức được kiểm chứng 

đơn thuần chỉ là thứ tự thực hiện của các phương thức. 

Trong bài báo này chúng tôi đề xuất một cách tiếp cận mới 

trong việc kiểm chứng sự nhất quán giữa cài đặt so với 

thiết kế ở thời điểm thực thi. Trong đó các phương thức 

trong giao thức có thể được thực hiện song song với nhau 

và phải thỏa mãn các mệnh đề tiền và hậu điều kiện. 

IV. PHƯƠNG PHÁP KIỂM CHỨNG SỰ TUÂN THỦ 
GIỮA THỰC THI VÀ ĐẶC TẢ GIAO TH ỨC 
TƯƠNG TÁC 

Giả sử một giao thức tương tác của một hàng đợi tương 

tranh (Concurrent Queue - CQ) với bốn phương thức được 

cài đặt cho phép gọi cùng lúc bởi một luồng cung cấp 

Producer đẩy các phần tử vào hàng đợi, và nhiều luồng 

Consumer cùng thao tác với các phần tử trong hàng đợi ( 

Hình 1). Tại trạng thái trừu tượng OPENED, các luồng 

Consumer có thể gọi các phương thức enqueue() hoặc 

dequeue() để bổ sung hoặc loại bỏ các phần tử của hàng 

đợi. Khi luồng Producer gọi phương thức close() để chuyển 

sang trạng thái trừu tượng CLOSED thì các phần tử khác sẽ 

không được bổ sung hoặc loại bỏ từ hàng đợi.  

 

 

 

 

 

Hình 1. Giao thức tương tác của hàng đợi tương 
tranh. 

Khi đó bài toán kiểm chứng sự tuân thủ giữa thực thi 

và đặc tả giao thức tương tác trong các chương trình đa 

luồng được đặc tả như sau: 

1. Thứ tự thực hiện của các phương thức trong chương 

trình phải tuân thủ theo các cung trong Hình 1 là một 

đường đi từ trạng thái đầu đến trạng thái kết thúc. 

Trong đó, hai phương thức dequeue(Q,x) và 

enqueue(Q,x) có thể được gọi đồng thời bởi các luồng 

khác nhau.  

2.  Khi phương thức enqueue(Q,x) được thực hiện thì tiền 

điều kiện là hàng đợi chưa đầy và hậu điều kiện là x 

phải được đẩy vào hàng đợi. Với phương thức 

dequeue(Q,x) thì tiền điều kiện là x thuộc hàng đợi và 

hậu điều kiện là x được loại bỏ khỏi hàng đợi. 

Giả sử đặc tả thiết kế giao thức này là đúng đắn. Tuy 

nhiên, cài đặt mã nguồn chương trình có thể vi phạm các 

đặc tả thiết kế của giao thức. Thông thường các vi phạm 

này khó được phát hiện trong bước kiểm thử bằng các bộ 

dữ liệu đầu vào và đầu ra.  

Do đó chúng tôi đã đề xuất phương pháp kiểm chứng 

sự tuân thủ giữa thực thi và đặc tả giao thức tương tác 

trong các chương trình đa luồng như sau (Hình 2). 

1. Sử dụng biểu thức chính quy mở rộng (RE) hoặc máy 

trạng thái giao thức (PSM) để đặc tả giao thức tương 

tác (IP), 

2. Người lập trình cài đặt các ứng dụng dựa trên các đặc 

tả IP, 

3. Tự động sinh các mã aspect từ các đặc tả IP,  

4. Các mã aspect sinh ra được tự động đan với mã của 

các chương trình ứng dụng để kiểm chứng động sự 

tuân thủ giữa thực thi và đặc tả IP.   

Kết quả thực nghiệm trong Mục V cho thấy khi các 

chương trình được thực hiện thì các mã đan xen vào có thể 

phát hiện được chính xác vị trí của các vi phạm nếu có của 

chương trình với đặc tả IP. Trong khi đó, các hành vi của 

OPENED 
close(Q) 

 

open(Q) 

[Pre:Q.Full = False] 

enqueue(Q,x) [Post: Q.x = True] 

CLOSED 

[Pre: Q.x = True] 

dequeue(Q,x) [Post : Q.x = 

False] 



chương trình gốc sẽ không bị thay đổi ngoại trừ thời gian 

thực hiện và kích thước của chương trình.   

 
 

 
 

 

 

 

 

 

 

 

Hình 2. Sơ đồ hoạt động của hệ thống. 

1.  Đặc tả giao thức tương tác 

1.1. Biểu thức chính quy mở rộng cho biểu diễn giao 

thức tương tác 

RE được mở rộng để biểu diễn IP độc lập với mã 

nguồn để sinh ra mã aspect được chúng tôi định nghĩa như 

sau. 

Định nghĩa 1 (Biểu thức chính quy mở rộng). 
Regular Expression - RE là một bộ năm RE = <M, O, S, Pre, 

Post>. Trong đó, 

1. M = {m1,m2,…,mn} là bảng chữ cái Sigma gồm một tập 

hữu hạn các phương thức, 

2. O = {o1,o2,…,op} là tập hữu hạn các đối tượng, 

3. Pre, Post là tập hữu hạn các tiền và hậu điều kiện, 

4. S = {s1,s2,…,sk} là tập hạn các biểu thức biểu diễn các 

phương thức,  

5. s ::= [Pre]o.m[Post]|s->s|s|s| s||s |s*|s+|(s). Trong đó: m ∈ M, 

s ∈ S, và o ∈ O. s→s là sự kết hợp của hai hoặc nhiều 

biểu thức tuần tự, s|s: phép hoặc, s||s: phép song song, 

s*: không hoặc nhiều phép lặp, s+: một hoặc nhiều phép 

lặp, (s): biểu thức kết hợp. 

Ví dụ  RE: 

[p1]o1.m1()[q1]→([p2]o2.m2()[q2]|[p3]o3.m3()[q3])
+→(o1.m1()||o4.m4())

→[p5]o5.m5()[q5] biểu diễn một IP. Trong đó, nếu tiền điều 

kiện p1 được thỏa mãn thì phương thức o1.m1() được thực 

hiện trước và thỏa mãn hậu điều kiện q1, sau đó là một 

hoặc nhiều lần thực hiện phương thức o2.m2() hoặc o3.m3() 

với các tiền điều kiện p2, p3 và hậu điều kiện q2, q3. Tiếp 

theo là các phương thức o1.m1() và o4.m4() được thực hiện 

song song. Cuối cùng là o5.m5() với các điều kiện là p5 và 

q5. 

1.2. Biểu đồ PSM cho biểu diễn giao thức tương tác 

Biểu đồ PSM trong UML2.0 biểu diễn thứ tự thực hiện 

của các phương thức cùng với ràng buộc về các mệnh đề 

tiền và hậu điều kiện được sử dụng để đặc tả IP. Chúng tôi 

định nghĩa hình thức như sau: 

Định nghĩa 2 (Máy trạng thái giao thức). Protocol 

State Machine - PSM là một bộ bẩy thành phần PSM = <S; 

σ; M; Pre; Post; s0;f>. Trong đó, S là tập hữu hạn các trạng 

thái, M là tập các phương thức, Pre, Post là tập các tiền điệu 

kiện và hậu điều kiện. σ ⊆ S×Pre×M×Post→S là hàm chuyển 

trạng thái. s0,f∈S lần lượt là các trạng thái đầu và kết thúc.  
 

 

 

 

 

 

 

 

Hình 3.  Biểu đồ PSM cho một giao thức tương tác. 

Hình 3 biểu diễn biểu đồ PSM cho một IP, thứ tự thực 

hiện của các phương thức được thể hiện bằng các cung 

trong biểu đồ. Trong đó: 

• S={1,2,3,4}∪{s0,f},  

• Pre={P1..P7};Post={Q1..Q7};M={M1..M7}, 

• σ={s0P1M1Q1→1;1P2M2Q2→2;…;3P7M7Q7→f; 4P6M6Q6→f}. 

[P1]   
M1(..)  [Q1] 

{ PSM Diagram} 

1 2 

 

[P2]   
M2(..)  [Q2] 

3 

 

4 
[P3] 
  M3(..)  [Q3] 

[P4]   
M4(..)  [Q4] 

[P5]   
M5(..)  [Q5] 

[P7]   
M7(..)  [Q7] 

[P6]   
M6(..)  [Q6] 

Cài đặt Chương trình Đặc tả 
(PSM, RE) 

Mã aspect 

Bộ sinh mã 
Biên dịch 

Đan xen mã 

Chạy kiểm thử 
và phát hiện lỗi  



2.  Sinh mã aspect 

Mục này trình bày thuật toán tự động sinh mã kiểm 

chứng aspect từ đặc tả IP. Với đặc tả dạng PSM chúng tôi 

sinh ra đồ thị có hướng để biểu diễn IP bằng thuật toán 

trong Bảng 1. Với đặc tả RE mở rộng  được đưa về dạng 

RE chuẩn bằng phép biến đổi mỗi s=[Pre]o.m[Post] thành 

một ký tự a∈∑ (một ký tự thuộc bảng chữ cái của biểu thức 

RE chuẩn). Từ dạng RE chuẩn chúng tôi chuyển sang máy 

trạng thái hữu hạn (Finite State Machine-FSM) bằng thuật 

toán trong [2]. Mã aspect sau đó được sinh ra tự động từ 

các đặc tả PSM và FSM.  

Bảng 1.  Sinh đồ thị biểu diễn IP từ đặc tả PSM 

 

Quá trình tự động sinh mã aspect gồm ba bước chính sau. 

Bước 1. Khởi tạo mẫu aspect sẽ được sinh ra từ đặc tả 

gao thức tương tác như sau.  

static final String aspectTemplate = 

"import org.aspectj.lang.JoinPoint;\n" + 

"public aspect ProtocolCheck {\n" + "#CONSTS#\n" + 

"#ADVICES#\n\n" + " void log(JoinPoint jp); \n"; 

Trong aspect mẫu trên xâu “#CONST#” sẽ được thay thế 

bằng các trạng thái của mỗi phương thức trong giao thức. 

Xâu “# ADVICES#” sẽ được thay thế bằng các điều kiện 

kiểm tra trước và sau (pointcut) của phương thức khi nó 

được thực hiện. Phương thức log(JoinPoint jp) sẽ thông báo 

các phương thức và vị trí của nó khi vi phạm đặc tả. 

Bước 2. Khởi tạo mẫu pointcut sẽ được sinh ra từ đặc 

tả gao thức tương tác như sau. 

static String pointcutTemplate = 

"\n" +" pointcut pc_#SIG_NM#(#CLS_NM# o):\n"+" target(o)\n"+ 

" &&call(#SIG#);\n"+" before(#CLS_NM# 

o):pc_#SIG_NM#(o){\n"+ 

" if (!(#PRE_COND#))\n" +" log(thisJoinPoint);\n"+" }\n"+ 

" after(#CLS_NM# o):pc_#SIG_NM#(o) {\n"+" o.state =  

ST_#SIG_NM#;\n"+”#POST_COND# "+” }\n"; 

Trong pointcut mẫu trên xâu “#SIG_NM#” sẽ được thay 

thế bằng tên của mỗi phương thức trong giao thức, “# 

CLS_NM#” sẽ được thay thế bằng tên của lớp tương ứng. 

Xâu “#PRE_COND#” và ”#POST_COND# sẽ được thay thế 

bằng các biểu thức tiền và hậu điều kiện.  

Bước 3. Các biểu thức tiền và hậu điều kiện được chia 

làm hai loại. Loại một kiểm tra thứ tự thực hiện của các 

phương thức trong giao thức. Loại hai đặc tả các điều kiện 

trước và sau của mỗi phương thức phải thỏa mãn khi nó 

được thực hiện.  

Bước 3.1. Với biểu thức tiền và hậu điều kiện loại một 

thì mỗi phương thức trong giao thức chúng tôi tự động 

sinh ra một biến trạng thái có tiền tố là ST_, theo sau là tên 

các phương thức. Mỗi khi phương thức được thực hiện thì 

biến trạng thái được gán bằng trạng thái của phương thức 

đó. Hàm sinh biểu thức tiền điều kiện được cài đặt như 

sau. 

static String genCondition( Entry<String, Set<String>> e, 

Set<String> entrySigs) { 

  String src = ""; 

Đầu vào: đặc tả PSM 

Đầu ra:  Đồ thị G = <V, M> đặc tả giao thức. Trong đó: 

• V là tập các đỉnh của đồ thị (được biểu diễn bằng tập các 

số nguyên),  

• M là tập các cung của đồ thị, M= 

{[Pre1]m1[Post1],[Pre2]m2[Post2],..., [Pren]mn[Postn]} là tập các 

phương thức với các tiền và hậu điều kiện thuộc giao 

thức, 

• Các cung của đồ thị được gán nhãn là các phương thức 

thuộc M, các đỉnh được gán nhãn là các số nguyên. Các 

cung này thể hiện mối quan hệ phụ thuộc giữa các 

phương thức trong IP. 

1. Tạo hàm song ánh µ: M → {1..|M|},|M| lực lượng của tập 

M, các số nguyên này là tập các đỉnh của đồ thị. 

2. Tạo một đỉnh vào và gán nhãn bằng 0, với mỗi m thuộc 

M0 (tập các đỉnh vào của máy trạng thái (ο → M0) tạo 

một cung từ đỉnh vào đến đỉnh µ(m), gán nhãn là 

[prem]m[postm].   

3. Với mỗi cung dạng m → m’ thuộc PSM tạo một nút µ(m) 

tới µ(m’) và gán nhãn  là {prem’}m’{postm’}.  

4. Tạo một đỉnh kết thúc, với mỗi m → Θ thuộc đỉnh kết 

thúc trong PSM, tạo một cung  từ µ(m) tới đỉnh kết thúc 

vừa tạo.     



  if (entrySigs.contains(e.getKey())) 

     src += "o.state==ST_START"; 

  for (String s: e.getValue()){ 

     if (s.equals("START"))  continue; 

     if (src.length() > 0) src += ""; 

     src += "o.state==ST_" +getMethodName(s); 

   } 

  return src; 

} 

Bước 3.2. Với các biểu thức tiền và hậu điều kiện loại 

hai, chúng tôi giới hạn được đặc tả dưới dạng các biểu 

thức logic của Java (bước 2 và 3, thuật toán trong Bảng 

2). Các biểu thức này được đọc trực tiếp từ đặc tả và đưa 

vào pointcut mẫu trong bước 2.  

3.  Đan mã aspect 

AspectJ cho phép đan xen mã aspect với các chương 

trình Java ở ba mức khác nhau: mức mã nguồn, mã 

bytecode và tại thời điểm nạp chương trình khi chương 

trình gốc chuẩn bị được thực hiện.  

Đan ở mức mã nguồn, AspectJ sẽ nạp các mã aspect và 

Java ở mức mã nguồn (.aj và .java), sau đó thực hiện biên 

dịch để sinh ra mã đã được đan xen bytecode, dạng .class.  

Đan xen ở mức mã bytecode, AspectJ sẽ dịch lại và sinh 

mã dạng .class từ các các mã aspect và Java đã được biên 

dịch ở dạng (.class). Đan xen tại thời điểm nạp chương 

trình (load time weaving), các mã của aspect và Java dạng 

.class được cung cấp cho máy ảo Java (JVM). Khi JVM 

nạp chương trình để chạy, bộ nạp lớp của AspectJ sẽ thực 

hiện đan mã và chạy chương trình. 

Với việc đan xen ở mức mã bytecode và tại thời điểm 

nạp chương trình thì phương pháp này có thể được sử 

dụng mà không yêu cầu phải có mã nguồn. Khi thay đổi 

đặc tả thì mới phải sinh và biên dịch lại mã aspect.  

V. THỰC NGHIỆM 

Chúng tôi đã cài đặt phương pháp này thành một công 

cụ kiểm chứng PVG (Protocol Verification Generator - 

PVG). Đầu vào của công cụ PVG là các FSM hoặc đồ thị 

có hướng biểu diễn giao thức tương tác. Đầu ra là các mã 

kiểm chứng aspect của AspectJ.  

Thực nghiệm được tiến hành trên lớp StreamBuffer với 

ba phương thức open(), read() và close(). Giao thức tương 

tác được đặc tả bằng biểu thức chính quy open()->(read())*-

>close() mô tả phương thức open() được thực hiện trước sau 

đó là một hoặc nhiều lần gọi phương thức read(), cuối cùng 

là phương thức close() được gọi để giải phóng tài nguyên. 

Bảng 2 minh họa một chương trình được cài đặt tuân 

thủ theo đúng giao thức bên trái và sai bên phải (do 

phương thức close(..) không được gọi). Các chương trình 

đa luồng này được xây dựng để tính tổng các số nguyên 

trong file. Thực hiện kiểm thử các chương trình trên với 

các input/output khác nhau, các kết quả cho thấy cả hai 

chương trình đều cho kết quả đúng như nhau. Tuy nhiên 

khi đan mã của các chương trình trên với mã aspect được 

sinh ra từ công cụ PVG chúng tôi đã phát hiện được vi 

phạm ràng buộc của chương trình được cài đặt sai bên 

phải.  

Bảng 2– Chương trình được cài đặt đúng – sai 
public class Mytest extends 

Thread 

{ 

   private int num; 

   public void run() { 

     try {  

         InputStream f = new 

FileInputStream("file.txt"); 

//open() 

         int c, s=0; 

         while ((c=f.read())!=-1){                                              

                        

System.out.print((char)c)       

           s=s+c; 

          } 

           f.close(); 

           System.out.print(s); 

         }catch(Exception e) { 

            e.printStackTrace(); } 

 } 

 public Mytest (int n)

 { 

     super(); 

     num=n; 

 } 

public static void main(String[] 

args) { 

      Mytest t1=new Mytest (1); 

      t1.start(); 

 }} 

public class Mytest extends Thread 

{ 

   private int num; 

   public void run() { 

     try {  

         InputStream f = new 

FileInputStream("file.txt"); //open() 

         int c, s=0; 

         while ((c=f.read())!=-1){                                              

            System.out.print((char)c)       

             s=s+c; 

          } 

      // phương thức  f.close() không 

dược gọi 

           System.out.print(s); 

         }catch(Exception e) { 

            e.printStackTrace(); } 

 } 

 public Mytest (int n) { 

     super(); 

     num=n; 

 } 

public static void main(String[] args) 

{ 

      Mytest t1=new Mytest (1); 

      t1.start(); 

 } 

} 



Bên cạnh giao thức này, chúng tôi cũng đã thử nghiệm 

với các giao thức khác trong [1,4,12,13,15]. Các giao thức 

này được đặc tả bằng các RE và PSM. Với mỗi đặc tả này 

chúng tôi sử dụng công cụ PVG để sinh các mã aspect của 

AspectJ và đan tự động với các chương trình Java mô 

phỏng để kiểm chứng sự tuân thủ giữa sự cài đặt đối với 

đặc tả giao thức. Các kết quả thực nghiệm trong Bảng 3.  

Trong đó, mỗi lớp trong cột 1 bên trái của Bảng 3 

tương ứng với số các phương thức của giao thức trong cột 

2. Chúng tôi xây dựng chương trình mô phỏng cho từng 

lớp với số các ca kiểm thử đúng và sai khác nhau trong cột 

3, kết qủa phát hiện trong cột 4. Với các ca kiểm thử đúng 

thì các lớp được cài đặt tuân thủ đúng đặc tả giao thức. 

Ngược lại, với các ca kiểm thử sai thì sẽ có ít nhất một 

phương thức thực hiện không đúng đặc tả (các vi phạm về 

thứ tự thực hiện, tiền và hậu điều kiện). Các giao thức đều 

được đặc tả dưới cả hai dạng RE và PSM.  

Các chương trình mô phỏng trước và sau khi đan mã 

AspectJ được chạy 20 lần với mỗi lần chạy thì số luồng 

được tăng dần từ 1 đến 20 luồng. Để đánh giá thời gian 

thực hiện của các chương trình trước khi đan mã aspect so 

với thời gian thực hiện sau khi đan mã chúng tôi tính tỷ lệ 

gia tăng thời gian trung bình bằng công thức sau: 

1 100%.

n

i i
i

ts tt

n
τ =

−
= ×
∑

 

Trong đó, tsi và tti lần lượt là thời gian thực hiện của 

chương trình trước và sau khi đan mã aspect ở lượt chạy 

thứ i, n là tổng số lượt chạy của chương trình trước và sau 

khi đan mã. Thời gian thực hiện của các chương trình 

trước và sau khi đan mã được tính bằng hiệu của thời gian 

hiện tại của hệ thống trước khi chương trình được thực 

hiện với thời gian hiện tại của hệ thống sau khi chương 

trình thực hiện xong. Kết quả thực nghiệm trong Bảng 3.  

Đối với các giao thức mô tả trong cột 1, Bảng 3 thì kết 

quả thực nghiệm cho thấy: (i) các aspect được sinh ra đúng 

so với các đặc tả giao thức, nhất quán giữa biểu thức chính 

quy và máy trạng thái giao thức, (ii) các aspect không làm 

thay đổi hành vi của chương trình gốc ngoại trừ thời gian 

chạy và kích thước của chương trình, (iii) đã phát hiện 

được các vi phạm tương tác (thứ tự thực hiện), tiền và hậu 

điều kiện của các phương thức được cài đặt mà không tuân 

thủ theo đặc tả IP,  (iv) thời gian chạy sau khi đan mã 

aspect sẽ tăng tỷ lệ thuận với số luồng trong chương trình 

và số phương thức được mô tả trong giao thức. 

Bảng 3- Kết quả thực nghiệm 
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Applet 5 10/20 10/20 0.915 
StreamReader 6 5/15 5/15 0.923 

ReadWrite 4 6/10 6/10 0.974 
Iterator 3 2/3 2/3 0.533 
Stack 5 2/5 2/5 0.915 

LinkedList 9 5/15 5/15 1.542 
ConcurrentQueue 4 3/5 3/5 0.974 

Roster 2 2/2 2/2 0.323 

VI.  KẾT LUẬN 

Giao thức tương tác đặc tả các ràng buộc về thứ tự thực 

hiện của các phương thức trong các lớp hoặc các thành 

phần phần mềm, các biểu thức tiền và hậu điều kiện của 

mỗi phương thức khi nó được thực hiện. Sự vi phạm giữa 

cài đặt và đặc tả giao thức này tại thời điểm thực thi có thể 

gây ra các lỗi hệ thống. Tuy nhiên, thiết kế giao diện của 

thành phần phần mềm chỉ đặc tả các ràng buộc về kiểu dữ 

liệu và giá trị trả về của mỗi phương thức. Hơn nữa, các 

trình biên dịch cũng không kiểm tra các ràng buộc của 

giao thức này.  

Trong bài báo này, chúng tôi đã đề xuất một phương 

pháp kiểm chứng sự tuân thủ giữa thực thi và đặc tả giao 

thức tương tác sử dụng lập trình hướng khía cạnh. Phương 

pháp này sử dụng máy trạng thái giao thức của UML và 

biểu thức chính quy để đặc tả giao thức tương tác. Các mã 

aspect được tự động sinh ra từ các đặc tả này sẽ đan tự 

động với mã của các ứng dụng để kiểm chứng sự tuân thủ 

giữa thực thi và đặc tả giao thức tương tác. 



Chúng tôi đã cài đặt phương pháp này thành một công 

cụ kiểm chứng và chạy thử nghiệm với ngôn ngữ lập trình 

Java thông qua một số giao thức thực tế. Kết quả thực 

nghiệm ban đầu cho thấy phương pháp được đề xuất có thể 

phát hiện được các vi phạm ràng buộc thiết kế của giao 

thức tương tác trong các chương trình đa luồng. Hạn chế 

của phương pháp này cũng như các phương pháp kiểm 

chứng động khác là phải thực thi chương trình, vị phạm 

chỉ được phát hiện trong bước kiểm thử. Hơn nữa, mã 

aspect được đan vào sẽ làm tăng kích thước và thời gian 

thực thi của các chương trình. 

Trong tương lai, chúng tôi sẽ tiếp tục mở rộng phương 

pháp này để kiểm chứng các bất biến đối tượng (object 

invariants), các ràng buộc thời gian (timing constraints), 

và các ràng buộc khác trong các chương trình đa luồng. 

Tiến tới phát triển môi trường kiểm chứng hoàn thiện dựa 

trên lập trình hướng khía cạnh để kiểm chứng sự tuân thủ 

giữa thiết kế với cài đặt mã nguồn chương trình.  
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