Magnetoelectric properties of multiferroic composites with pseudo 2-2 type multilayered structure

Ma J., Shi Z., Lin Y.-H., Nan C.-W.

State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China

Abstract: A pseudo 2-2 type multilayered magnetoelectric composite of Pb(Zr, Ti)O3 slice array (with base) and Terfenol-D/epoxy medium was prepared by the dice-and-fill technique. Obvious magnetoelectric anisotropy was observed in the pseudo 2-2 type composite, e.g., the magnetoelectric coefficients at low frequency were about (1.62-1.75) × 105 V · m-1T-1 in the in-plane directions, but only 1.3 × 104 V · m-1T-1 in the out-of-plane direction. The pseudo 2-2 type composite can detect AC magnetic field as small as 10-9 T under resonance drive. The magnetoelectric anisotropy and high magnetic field sensitivity make such pseudo 2-2 type multilayered magnetoelectric composites detect both direction and magnitude of magnetic field, which is of technological importance for applications as magnetic sensors. © 2009 Chin. Phys. Soc. Author Keywords: Magnetoelectric effect; Multiferroics; Multilayered composites

Year: 2009

Source title: Wuli Xuebao/Acta Physica Sinica

Volume: 58

Issue: 8

Page: 5852-5856

Cited by: 2

Link: Scorpus Link

Document Type: Article

Source: Scopus

Authors with affiliations:

- 1. Ma, J., State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- 2. Shi, Z., State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- 3. Lin, Y.-H., State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- 4. Nan, C.-W., State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China