
Graphs

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++

Goodrich, Tamassia and Mount (Wiley, 2004)

ORD

DFW

SFO

LAX

8
0
2

17
43

1843

1233

3
3
7

Graphs 2

Outline and Reading

Data structures for graphs (§13.2)
Graph traversal (§13.3)
� Depth-first search

� Breadth-first search

Directed graphs (§13.4)
Shortest paths (§13.6)
� Dijkstra's Algorithm

Minimum spanning trees (§13.7)
� Kruskal's Algorithm

� Prim-Jarnik Algorithm

Graphs 3

Graph
A graph is a pair (V, E), where

� V is a set of nodes, called vertices

� E is a collection of pairs of vertices, called edges

� Vertices and edges are positions and store elements

Example:

� A vertex represents an airport and stores the three-letter airport code

� An edge represents a flight route between two airports and stores the
mileage of the route

ORD PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

138
717

43

1843

1099
1120

1233
3
3
7

2555

14
2

Graphs 4

Edge Types
Directed edge

� ordered pair of vertices (u,v)

� first vertex u is the origin

� second vertex v is the destination

� e.g., a flight

Undirected edge

� unordered pair of vertices (u,v)

� e.g., a flight route

Directed graph (Digraph)

� all the edges are directed

� e.g., flight network

Undirected graph

� all the edges are undirected

� e.g., route network

ORD DFW
flight AA 1206

ORD DFW

u v

(u,v)

flight route

802 miles

802 miles

Weighted edge

Weighted graph

� all the edges are weighted

Graphs 5

Applications
Electronic circuits

� Printed circuit board

� Integrated circuit

Transportation networks

� Highway network

� Flight network

Computer networks

� Local area network

� Internet

� Web

Databases

� Entity-relationship diagram

Graphs 6

Terminology
End vertices (or endpoints) of an edge
� U and V are the endpoints of a

Edges incident on a vertex
� a, d, and b are incident on V

Adjacent vertices
� U and V are adjacent

Degree of a vertex
� X has degree 5

Parallel edges
� h and i are parallel edges

Self-loop
� j is a self-loop

XU

V

W

Z

Y

a

c

b

e

d

f

g

h

i

j

Graphs 7

Terminology (cont.)

Outgoing edges of a vertex

� h and b are the outgoing edges of X

Incoming edges of a vertex

� e, g, and i are incoming edges of X

In-degree of a vertex

� X has in-degree 3

Out-degree of a vertex

� X has out-degree 2

X

V

W

Z

Y

b

e

d

f

g

h

i

j

Graphs 8

Terminology (cont.)
Path

� sequence of alternating vertices and edges

� begins with a vertex

� ends with a vertex

� each edge is preceded and
followed by its endpoints

Simple path

� path such that all its vertices
and edges are distinct

Examples

� P1=(V,b,X,h,Z) is a simple path

� P2=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple

P1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hP2

Graphs 9

Terminology (cont.)
Cycle

� circular sequence of alternating
vertices and edges

� each edge is preceded and
followed by its endpoints

Simple cycle

� cycle such that all its vertices
and edges are distinct

Examples

� C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a
simple cycle

� C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple

C1

XU

V

W

Z

Y

a

c

b

e

d

f

g

hC2

Graphs 10

Properties of Undirected Graphs

Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1 – Total degree

ΣΣΣΣv deg(v) = 2m

Proof: each edge is counted
twice

Property 2 – Total number of
edges

In an undirected graph with no
self-loops and no multiple
edges

m ≤≤≤≤ n (n −−−− 1)////2

Proof: each vertex has degree
at most (n −−−− 1)

Example

� n = = = = 4

� m = = = = 6

� deg(v) = 3

A graph with given number of vertices (4)
and maximum number of edges

Graphs 11

Properties of Directed Graphs
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1 – Total in-degree
and out-degree

ΣΣΣΣv in-deg(v) = m

ΣΣΣΣv out-deg(v) = m

Property 2 – Total number of
edges

In an directed graph with no
self-loops and no multiple
edges

m ≤≤≤≤ n (n −−−− 1)

Example

� n = 4= 4= 4= 4

� m = 12= 12= 12= 12

� deg(v) = 6

A graph with given number of vertices
(4) and maximum number of edges

Graphs 12

Main Methods of the Graph ADT

Vertices and edges

� are positions

� store elements

Accessor methods

� endVertices(e): an array of the
two end vertices of e

� opposite(v, e): the vertex
opposite of v on e

� areAdjacent(v, w): true iff v
and w are adjacent

� replace(v, x): replace element
at vertex v with x

� replace(e, x): replace element
at edge e with x

Update methods

� insertVertex(o): insert a vertex
storing element o

� insertEdge(v, w, o): insert an edge
(v,w) storing element o

� removeVertex(v): remove vertex v
(and its incident edges)

� removeEdge(e): remove edge e

Iterator methods

� incidentEdges(v): edges incident
to v

� vertices(): all vertices in the graph

� edges(): all edges in the graph

Graphs 13

Data Structures for Graphs

Edge list structures

Adjacency list structures

Adjacency matrix structures

Graphs 14

Edge List Structure
An edge list can be
stored in a sequence,
a vector, a list or a
dictionary such as a
hash table

ORD
PVD

MIA
DFW

LGA

849

8
0
2

138
7 1099
1120

14
2

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA) 1120

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex Sequence

Graphs 15

Edge List Structure
• Vertex object

• element

• reference to position in
vertex sequence

• Edge object
• element

• origin vertex object

• destination vertex object

• reference to position in
edge sequence

• Vertex sequence
• sequence of vertex objects

• Edge sequence
• sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d

Graphs 16

Adjacency List Structure

ORD PVD

MIA
DFW

LGA

849

8
0
2

138
7 1099
1120

14
2

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA)1120

Edge List

ORD

LGA

PVD

DFW

MIA

(ORD, PVD)

Adjacency List

(ORD, DFW)

(LGA, PVD) (LGA, MIA)

(PVD, ORD) (PVD, LGA)

(LGA, DFW)

(DFW, ORD) (DFW, LGA) (DFW, MIA)

(MIA, LGA) (MIA, DFW)

Graphs 17

Adjacency List Structure

• Edge list structure

• Incidence sequence for
each vertex

• sequence of references
to edge objects of
incident edges

• Augmented edge
objects

• references to associated
positions in incidence
sequences of end
vertices

u

v

w

a b

a

u v w

b

Graphs 18

Adjacency Matrix
Structure

010104

0

0

1

1

3

0

0

1

1

2

1113

2

1

0

410

011

100

000

0:ORD
2:PVD

4:MIA
3:DFW

1:LGA

849

8
0
2

138
7 1099

1120

14
2

(ORD, PVD)

(ORD, DFW)

(LGA, PVD)

(LGA, MIA)

(DFW, LGA)

849

802

142

1099

1387

(DFW, MIA)1120

Edge List

ORD

LGA

PVD

DFW

MIA

Vertex Sequence

0

1

2

3

4

Graphs 19

Adjacency Matrix Structure

• Edge list structure

• Augmented vertex objects
• Integer key (index)

associated with vertex

• 2D-array adjacency array
• Reference to edge object

for adjacent vertices

• Null for non nonadjacent
vertices

• The “old fashioned”
version just has 0 for no
edge and 1 for edge

u

v

w

a b

2

1

0

210

∅∅∅∅∅∅∅∅

∅∅∅∅

∅∅∅∅∅∅∅∅

a

u v w0 1 2

b

Graphs 20

Asymptotic Performance

n2n + mn + mSpace

n2deg(v)mremoveVertex(v)

111insertEdge(v, w, o)

n211insertVertex(o)

111removeEdge(e)

1min(deg(v), deg(w))mareAdjacent (v, w)

ndeg(v)m
incidentEdges(v)

adjacentVertices(v)

Adjacency
Matrix

Adjacency
List

Edge
List

• n vertices, m edges

• no parallel edges

• no self-loops

• Bounds are “big-Oh”

Graphs 21

Graph Traversal

Depth-First Search

Bread-First Search

Others…

Depth-First Search

DB

A

C

E

Graphs 23

Subgraphs

A subgraph S of a graph G
is a graph such that

� The vertices of S are a subset
of the vertices of G

� The edges of S are a subset
of the edges of G

A spanning subgraph of G
is a subgraph that contains
all the vertices of G

Subgraph

Spanning subgraph

Graphs 24

Connectivity

A graph is connected if there is a path between every pair
of vertices

A connected component of a graph G is a maximal
connected subgraph of G

Connected graph
Non-connected graph with two

connected components

Graphs 25

Trees and Forests

A (free) tree is an undirected
graph T such that

� T is connected

� T has no cycles

This definition is different from
that of a rooted tree

A forest is an undirected
graph without cycles

The connected components
of a forest are trees

Tree

Forest

Graphs 26

Spanning Trees and Forests

A spanning tree of a connected
graph is a spanning subgraph
that is a tree

A spanning tree is not unique
unless the graph is a tree

Spanning trees have
applications to the design of
communication networks

A spanning forest of a graph is
a spanning subgraph that is a
forest

Graph

Spanning tree

Graphs 27

Depth-First Search

Depth-first search (DFS) is a
general technique for
traversing a graph

A DFS traversal of a graph G

� Visits all the vertices and edges
of G

� Determines whether G is
connected

� Computes the connected
components of G

� Computes a spanning forest of
G

DFS on a graph with n
vertices and m edges
takes O(n + m) time

DFS can be further
extended to solve other
graph problems

� Find and report a path
between two given vertices

� Find a cycle in the graph

Depth-first search is to
graphs what Euler tour is
to binary trees

Graphs 28

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

Graphs 29

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Graphs 30

DFS and Maze Traversal

The DFS algorithm is
similar to a classic strategy
for exploring a maze:

� We mark each intersection,
corner and dead end (vertex) visited

� We mark each corridor (edge) traversed

� We keep track of the path back to the entrance
(start vertex) by means of a rope (recursion stack)

Graphs 31

DFS Algorithm
The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

DFS(G, w)

else

setLabel(e, BACK)

Algorithm DFS(G)

Input graph G

Output labeling of the edges of G
as discovery edges and
back edges

for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)

for all e ∈ G.edges()

setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED

DFS(G, v)

Graphs 32

Properties of DFS

Property 1
DFS(G, v) visits all the vertices and edges in the
connected component of v

Property 2
The discovery edges labeled by DFS(G, v) form a
spanning tree of the connected component of v

DB

A

C

E

Graphs 33

Analysis of DFS

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice

� once as UNEXPLORED

� once as VISITED

Each edge is labeled twice

� once as UNEXPLORED

� once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex

DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

� Recall that ΣΣΣΣv deg(v) = 2m

DB

A

C

E

Graphs 34

Path Finding

We can specialize the DFS
algorithm to find a path between
two given vertices u and z

We call DFS(G, u) with u as the
start vertex

We use a stack S to keep track
of the path between the start
vertex and the current vertex

As soon as destination vertex z is
encountered, we return the path
as the contents of the stack

Algorithm pathDFS(G, v, z)

setLabel(v, VISITED)

S.push(v)

if v = z

return S.elements()

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

S.push(e)

pathDFS(G, w, z)

S.pop(e)

else

setLabel(e, BACK)

S.pop(v)

Graphs 35

Cycle Finding

We can specialize the DFS
algorithm to find a simple
cycle

We use a stack S to keep
track of the path between the
start vertex and the current
vertex

As soon as a back edge (v, w)
is encountered, we return the
cycle as the portion of the

stack from the top to vertex w

Algorithm cycleDFS(G, v)

setLabel(v, VISITED)

S.push(v)

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

S.push(e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

cycleDFS(G, w)

S.pop(e)

else

T ← new empty stack

repeat

o ← S.pop()

T.push(o)

until o = w

return T.elements()

S.pop(v)

Breadth-First Search

CB

A

E

D

L0

L1

F
L2

Graphs 37

Breadth-First Search

• Breadth-first search
(BFS) is a general
technique for traversing
a graph

• A BFS traversal of a
graph G

• Visits all the vertices and
edges of G

• Determines whether G is
connected

• Computes the connected
components of G

• Computes a spanning
forest of G

• BFS on a graph with n
vertices and m edges
takes O(n + m) time

• BFS can be further
extended to solve other
graph problems

• Find and report a path
with the minimum
number of edges
between two given
vertices

• Find a simple cycle, if
there is one

Graphs 38

Example

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

Graphs 39

Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

Graphs 40

Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

discovery edge
cross edge

visited vertexA
A unexplored vertex

unexplored edge

Graphs 41

BFS Algorithm
The algorithm uses a
mechanism for setting and
getting “labels” of vertices
and edges

Algorithm BFS(G, s)

L0 ← new empty sequence
L0.insertLast(s)

setLabel(s, VISITED)

i ← 0

while ¬Li.isEmpty()

Li +1 ← new empty sequence

for all v ∈ Li.elements()

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

setLabel(w, VISITED)

Li +1.insertLast(w)

else

setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)

Input graph G

Output labeling of the edges
and partition of the
vertices of G

for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)

for all e ∈ G.edges()

setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED

BFS(G, v)

Graphs 42

Properties

Notation
Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and edges of Gs

Property 2
The discovery edges labeled by BFS(G, s) form a
spanning tree Ts of Gs

Property 3
For each vertex v in Li

� The path of Ts from s to v has i edges

� Every path from s to v in Gs has at least i edges

CB

A

E

D

L0

L1

F
L2

Graphs 43

Analysis

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice

• once as UNEXPLORED

• once as VISITED

• Each edge is labeled twice

• once as UNEXPLORED

• once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence Li

• Method incidentEdges() is called once for each vertex

• BFS runs in O(n + m) time provided the graph is represented by
the adjacency list structure

• Recall that ΣΣΣΣv deg(v) = 2m

Graphs 44

Applications

• Using the template method pattern, we can
specialize the BFS traversal of a graph G to
solve the following problems in O(n + m) time

• Compute the connected components of G

• Compute a spanning forest of G

• Find a simple cycle in G, or report that G is a forest

• Given two vertices of G, find a path in G between
them with the minimum number of edges, or report
that no such path exists

Directed Graphs

JFK

BOS

MIA

ORD

LAX
DFW

SFO

Graphs 46

Digraphs

A digraph is a graph
whose edges are all directed
� Short for “directed graph”

Applications

� one-way streets

� flights

� task scheduling

A graph G=(V,E) such that

� Each edge goes in one direction:

� Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n*(n-1).

A

C

E

B

D

Graphs 47

Digraph Application
Scheduling: edge (a,b) means task a must be
completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171

Graphs 48

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a
digraph that has no directed cycles

A topological ordering of a digraph is
a numbering

v1 , …, vn

of the vertices such that for every
edge (vi , vj), we have i < j

Example: in a task scheduling
digraph, a topological ordering a task
sequence that satisfies the
precedence constraints

Theorem

A digraph admits a topological
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

Graphs 49

write c.s. program

play

Topological Sorting

Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10

11

make cookies

for professors

Graphs 50

Running time: O(n + m). How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)

H ←←←← G // Temporary copy of G

n ←←←← G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v ←←←← n

n ←←←← n - 1

Remove v from H

Graphs 51

Topological Sorting
Algorithm using DFS

Simulate the algorithm by using
depth-first search

O(n+m) time.

Algorithm topologicalDFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

topologicalDFS(G, w)

else

{e is a forward or cross edge}

Label v with topological number n

n ← n - 1

Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G
n ← G.numVertices()

for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)

for all e ∈ G.edges()

setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED

topologicalDFS(G, v)

Graphs 52

Topological Sorting Example

Graphs 53

Topological Sorting Example

9

Graphs 54

Topological Sorting Example

8

9

Graphs 55

Topological Sorting Example

7

8

9

Graphs 56

Topological Sorting Example

7

8

6

9

Graphs 57

Topological Sorting Example

7

8

56

9

Graphs 58

Topological Sorting Example

7

4

8

56

9

Graphs 59

Topological Sorting Example

7

4

8

56

3

9

Graphs 60

Topological Sorting Example

2

7

4

8

56

3

9

Graphs 61

Topological Sorting Example

2

7

4

8

56

1

3

9

Shortest Paths

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

Graphs 63

Weighted Graphs

In a weighted graph, each edge has an associated
numerical value, called the weight of the edge

Edge weights may represent distances, costs, etc.

Example:
� In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

138
717

43

1843

1099
1120

1233
3
3
7

2555

14
2

1
2
0
5

Graphs 64

Shortest Paths
Given a weighted graph and two vertices u and v, we want to find a
path of minimum total weight between u and v.

� Length of a path is the sum of the weights of its edges.

Example:
� Shortest path between Providence and Honolulu

Applications
� Internet packet routing

� Flight reservations

� Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

138
717

43

1843

1099
1120

1233
3
3
7

2555

14
2

1
2
0
5

Graphs 65

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path

Property 2:
There is a tree of shortest paths from a start vertex to all the other
vertices

Example: Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

849

8
0
2

138
717

43

1843

1099
1120

1233
3
3
7

2555

14
2

1
2
0
5

Graphs 66

Dijkstra’s Algorithm

The distance of a vertex v
from a vertex s is the length
of a shortest path between
s and v

Dijkstra’s algorithm
computes the distances of
all the vertices from a given
start vertex s

Assumptions:

� the graph is connected

� the edges are undirected

� the edge weights are
nonnegative

We grow a “cloud” of vertices,
beginning with s and eventually
covering all the vertices

We store with each vertex v a label
d(v) representing the distance of v
from s in the subgraph consisting of
the cloud and its adjacent vertices

At each step

� We add to the cloud the vertex u

outside the cloud with the smallest
distance label, d(u)

� We update the labels of the vertices
adjacent to u

Graphs 67

Edge Relaxation

Consider an edge e ==== (u,z)

such that

� u is the vertex most recently
added to the cloud

� z is not in the cloud

The relaxation of edge e

updates distance d(z) as
follows:

d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e

Graphs 68

Example

CB

A

E

D

F

0

428

∞∞∞∞ ∞∞∞∞

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 11

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

328

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Graphs 69

Example (cont.)

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

Graphs 70

Dijkstra’s Algorithm

A priority queue stores the
vertices outside the cloud

� Key: distance

� Element: vertex

Locator-based methods

� insert(k,e) returns a locator

� replaceKey(l,k) changes the

key of an item

We store two labels with
each vertex:

� Distance (d(v) label)

� locator in priority queue

Algorithm DijkstraDistances(G, s)

Q ← new heap-based priority queue

for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else

setDistance(v, ∞∞∞∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()

u ← Q.removeMin()

for all e ∈ G.incidentEdges(u)
{ relax edge e }

z ← G.opposite(u,e)

r ← getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)

Q.replaceKey(getLocator(z),r)

Graphs 71

Analysis of Dijkstra’s Algorithm
Graph operations
� Method incidentEdges is called once for each vertex

Label operations
� We set/get the distance and locator labels of vertex z O(deg(z)) times

� Setting/getting a label takes O(1) time

Priority queue operations
� Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time

� The key of a vertex in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Dijkstra’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

� Recall that ΣΣΣΣv deg(v) = 2m

The running time can also be expressed as O(m log n) since the
graph is connected

Graphs 72

Why Dijkstra’s Algorithm Works
Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

� Suppose it didn’t find all shortest
distances. Let F be the first wrong
vertex the algorithm processed.

� When the previous node, D, on the
true shortest path was considered,
its distance was correct.

� But the edge (D,F) was relaxed at
that time!

� Thus, so long as d(F)>d(D), F’s
distance cannot be wrong. That is,
there is no wrong vertex.

Graphs 73

Why It Doesn’t Work for
Negative-Weight Edges

� If a node with a negative
incident edge were to be added
late to the cloud, it could mess
up distances for vertices already
in the cloud.

CB

A

E

D

F

0

457

5 9

48

7 1

2 5

6

0 -8

Dijkstra’s algorithm is based on the greedy
method. It adds vertices by increasing distance.

C’s true distance is 1, but
it is already in the cloud

with d(C)=5!

Graphs 74

Bellman-Ford Algorithm

Works even with negative-
weight edges

Must assume directed edges
(for otherwise we would have
negative-weight cycles)

Iteration i finds all shortest
paths that use i edges.

Running time: O(n m).

Can be extended to detect a
negative-weight cycle if it exists

� How?

Algorithm BellmanFord(G, s)

for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else

setDistance(v, ∞∞∞∞)
for i ← 1 to n-1 do

for each e ∈ G.edges()
{ relax edge e }

u ← G.origin(e)
z ← G.opposite(u,e)

r ← getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)

Graphs 75

∞∞∞∞

-2

Bellman-Ford Example

∞∞∞∞∞∞∞∞

0

∞∞∞∞

∞∞∞∞

∞∞∞∞

48

7 1

-2 5

-2

3 9

∞∞∞∞

0

∞∞∞∞

∞∞∞∞

∞∞∞∞

48

7 1

-2 5

3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞∞∞∞

48

7 1

-2 5

3 9

∞∞∞∞

8 -2 4

-15

6
1

9

-25

0

1

-1

9

48

7 1

-2 5

-2

3 9
4

Graphs 76

DAG-based Algorithm

Works even with
negative-weight edges

Uses topological order

Doesn’t use any fancy
data structures

Is much faster than
Dijkstra’s algorithm

Running time: O(n+m).

Algorithm DagDistances(G, s)

for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else

setDistance(v, ∞∞∞∞)
Perform a topological sort of the vertices

for u ← 1 to n do {in topological order}
for each e ∈ G.outEdges(u)

{ relax edge e }

z ← G.opposite(u,e)

r ← getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)

Graphs 77

∞∞∞∞

-2

DAG Example

∞∞∞∞∞∞∞∞

0

∞∞∞∞

∞∞∞∞

∞∞∞∞

48

7 1

-5 5

-2

3 9

∞∞∞∞

0

∞∞∞∞

∞∞∞∞

∞∞∞∞

48

7 1

-5 5

3 9

Nodes are labeled with their d(v) values

-2

-28

0

4

∞∞∞∞

48

7 1

-5 5

3 9

∞∞∞∞

-2 4

-1

1 7

-25

0

1

-1

7

48

7 1

-5 5

-2

3 9
4

1

2 43

6 5

1

2 43

6 5

8

1

2 43

6 5

1

2 43

6 5

5

0

(two steps)

Minimum Spanning Trees

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 79

Minimum Spanning Trees
Spanning subgraph

� Subgraph of a graph G
containing all the vertices of G

Spanning tree

� Spanning subgraph that is
itself a (free) tree

Minimum spanning tree (MST)

� Spanning tree of a weighted
graph with minimum total edge
weight

Applications

� Communications networks

� Transportation networks

ORD

PIT

ATL

STL

DEN

DFW

DCA

10
1

9

8

6

3

25

7

4

Graphs 80

Cycle Property

Cycle Property:

� Let T be a minimum spanning
tree of a weighted graph G

� Let e be an edge of G that is
not in T and C let be the cycle
formed by e with T

� For every edge f of C,

weight(f) ≤≤≤≤ weight(e)

Proof:

� By contradiction

� If weight(f) > > > > weight(e) we can
get a spanning tree of smaller
weight by replacing e with f

8

4

2
3

6

7

7

9

8

e

C

f

8

4

2
3

6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree

Graphs 81

U V

Partition Property
Partition Property:

� Consider a partition of the vertices of
G into subsets U and V

� Let e be an edge of minimum weight
across the partition

� There is a minimum spanning tree of
G containing edge e

Proof:

� Let T be an MST of G

� If T does not contain e, consider the
cycle C formed by e with T and let f
be an edge of C across the partition

� By the cycle property,
weight(f) ≤≤≤≤ weight(e)

� Thus, weight(f) = = = = weight(e)

� We obtain another MST by replacing
f with e

8

4

2
8

5

7

3

9

8 e

f

8

4

2
8

5

7

3

9

8 e

f

Replacing f with e yields

another MST

U V

Graphs 82

Kruskal’s Algorithm

A priority queue stores
the edges outside the
cloud

� Key: weight

� Element: edge

At the end of the
algorithm

� We are left with one cloud
that encompasses the MST

� A tree T which is our MST

Algorithm KruskalMST(G)

for each vertex v in G do

define a Cloud(v) of � {v}

let Q be a priority queue.

Insert all edges into Q using their

weights as the key

T � ∅∅∅∅

while T has fewer than n-1 edges do

edge e = Q.removeMin()

Let u, v be the endpoints of e

if Cloud(v) ≠≠≠≠ Cloud(u) then

Add edge e to T

Merge Cloud(v) and Cloud(u)

return T

Graphs 83

Data Structure for Kruskal
Algorithm
The algorithm maintains a forest of trees

An edge is accepted it if connects distinct trees

We need a data structure that maintains a partition,
i.e., a collection of disjoint sets, with the operations:

-find(u): return the set

storing u

-union(u,v): replace
the sets storing u and v
with their union

Graphs 84

Representation of a
Partition

Each set is stored in a sequence

Each element has a reference back to the set

� operation find(u) takes O(1) time, and returns the set of
which u is a member.

� in operation union(u,v), we move the elements of the
smaller set to the sequence of the larger set and update
their references

� the time for operation union(u,v) is min(nu,nv), where nu

and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into a
set of size at least double, hence each element is
processed at most log n times

Graphs 85

Partition-Based Implementation
A partition-based version of Kruskal’s Algorithm
performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):

Input: A weighted graph G.

Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.

Let Q be a priority queue storing the edges of G, sorted by their weights

Let T be an initially-empty tree

while Q is not empty do

(u,v) ← Q.removeMinElement()

if P.find(u) != P.find(v) then

Add (u,v) to T

P.union(u,v)

return T

Running time:
O((n+m)log n)

Graphs 86

Kruskal
Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 87

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Example

Graphs 88

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 89

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 90

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 91

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 92

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 93

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 94

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 95

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 96

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 97

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 98

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 99

Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

Graphs 100

Prim-Jarnik’s Algorithm
Similar to Dijkstra’s algorithm (for a connected graph)

We pick an arbitrary vertex s and we grow the MST as a
cloud of vertices, starting from s

We store with each vertex v a label d(v) = the smallest
weight of an edge connecting v to a vertex in the cloud

At each step:

� We add to the cloud the
vertex u outside the cloud
with the smallest distance
label

� We update the labels of the
vertices adjacent to u

Graphs 101

Prim-Jarnik’s Algorithm (cont.)
A priority queue stores
the vertices outside the
cloud
� Key: distance

� Element: vertex

Locator-based methods
� insert(k,e) returns a

locator

� replaceKey(l,k) changes
the key of an item

We store three labels
with each vertex:
� Distance

� Parent edge in MST

� Locator in priority queue

Algorithm PrimJarnikMST(G)

Q ← new heap-based priority queue

s ← a vertex of G

for all v ∈ G.vertices()

if v = s : setDistance(v, 0)

else : setDistance(v, ∞∞∞∞)

setParent(v, ∅∅∅∅)

l ← Q.insert(getDistance(v), v)

setLocator(v,l)

while ¬Q.isEmpty()

u ← Q.removeMin()

for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)

r ← weight(e)

if r < getDistance(z)

setDistance(z,r)

setParent(z,e)

Q.replaceKey(getLocator(z),r)

Graphs 102

Example

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

8 ∞∞∞∞

∞∞∞∞

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 ∞∞∞∞

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 ∞∞∞∞

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5 4

7

Graphs 103

Example (contd.)

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

Graphs 104

Analysis
Graph operations
� Method incidentEdges is called once for each vertex

Label operations
� We set/get the distance, parent and locator labels of vertex z O(deg(z))

times

� Setting/getting a label takes O(1) time

Priority queue operations
� Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time

� The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

� Recall that ΣΣΣΣv deg(v) = 2m

The running time is O(m log n) since the graph is connected

