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Outline and Reading

Data structures for graphs (§13.2)
Graph traversal (§13.3)
� Depth-first search

� Breadth-first search

Directed graphs (§13.4)
Shortest paths (§13.6)
� Dijkstra's Algorithm

Minimum spanning trees (§13.7)
� Kruskal's Algorithm

� Prim-Jarnik Algorithm
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Graph
A graph is a pair (V, E), where

� V is a set of nodes, called vertices

� E is a collection of pairs of vertices, called edges

� Vertices and edges are positions and store elements

Example:

� A vertex represents an airport and stores the three-letter airport code

� An edge represents a flight route between two airports and stores the 
mileage of the route
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Edge Types
Directed edge

� ordered pair of vertices (u,v)

� first vertex u is the origin

� second vertex v is the destination

� e.g., a flight

Undirected edge

� unordered pair of vertices (u,v)

� e.g., a flight route

Directed graph (Digraph)

� all the edges are directed

� e.g., flight network

Undirected graph

� all the edges are undirected

� e.g., route network

ORD DFW
flight AA 1206

ORD DFW

u v

(u,v)

flight route

802 miles

802 miles

Weighted edge

Weighted graph

� all the edges are weighted
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Applications
Electronic circuits

� Printed circuit board

� Integrated circuit

Transportation networks

� Highway network

� Flight network

Computer networks

� Local area network

� Internet

� Web

Databases

� Entity-relationship diagram
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Terminology
End vertices (or endpoints) of an edge
� U and V are the endpoints of a

Edges incident on a vertex
� a, d, and b are incident on V

Adjacent vertices
� U and V are adjacent

Degree of a vertex
� X has degree 5 

Parallel edges
� h and i are parallel edges

Self-loop
� j is a self-loop
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Terminology (cont.)

Outgoing edges of a vertex

� h and b are the outgoing edges of X

Incoming edges of a vertex

� e, g, and i are incoming edges of X

In-degree of a vertex

� X has in-degree 3 

Out-degree of a vertex

� X has out-degree 2
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Terminology (cont.)
Path

� sequence of alternating vertices and edges 

� begins with a vertex

� ends with a vertex

� each edge is preceded and 
followed by its endpoints

Simple path

� path such that all its vertices 
and edges are distinct

Examples

� P1=(V,b,X,h,Z) is a simple path

� P2=(U,c,W,e,X,g,Y,f,W,d,V) is a path that is not simple
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Terminology (cont.)
Cycle

� circular sequence of alternating 
vertices and edges 

� each edge is preceded and 
followed by its endpoints

Simple cycle

� cycle such that all its vertices 
and edges are distinct

Examples

� C1=(V,b,X,g,Y,f,W,c,U,a,↵) is a 
simple cycle

� C2=(U,c,W,e,X,g,Y,f,W,d,V,a,↵)
is a cycle that is not simple
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Properties of Undirected Graphs

Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1 – Total degree

ΣΣΣΣv deg(v) = 2m

Proof: each edge is counted 
twice

Property 2 – Total number of 
edges

In an undirected graph with no 
self-loops and no multiple 
edges

m ≤≤≤≤ n (n −−−− 1)////2

Proof: each vertex has degree 
at most (n −−−− 1)

Example

� n = = = = 4

� m = = = = 6

� deg(v) = 3

A graph with given number of vertices (4) 
and maximum number of edges
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Properties of Directed Graphs
Notation

n number of vertices

m number of edges

deg(v) degree of vertex v

Property 1 – Total in-degree 
and out-degree

ΣΣΣΣv in-deg(v) = m

ΣΣΣΣv out-deg(v) = m

Property 2 – Total number of 
edges

In an directed graph with no 
self-loops and no multiple 
edges

m ≤≤≤≤ n (n −−−− 1)

Example

� n = 4= 4= 4= 4

� m = 12= 12= 12= 12

� deg(v) = 6

A graph with given number of vertices 
(4) and maximum number of edges
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Main Methods of the Graph ADT

Vertices and edges

� are positions

� store elements

Accessor methods

� endVertices(e): an array of the 
two end vertices of e

� opposite(v, e): the vertex 
opposite of v on e

� areAdjacent(v, w): true iff v 
and w are adjacent

� replace(v, x): replace element 
at vertex v with x

� replace(e, x): replace element 
at edge e with x

Update methods

� insertVertex(o): insert a vertex 
storing element o

� insertEdge(v, w, o): insert an edge 
(v,w) storing element o

� removeVertex(v): remove vertex v 
(and its incident edges)

� removeEdge(e): remove edge e

Iterator methods

� incidentEdges(v): edges incident 
to v

� vertices(): all vertices in the graph

� edges(): all edges in the graph
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Data Structures for Graphs

Edge list structures

Adjacency list structures

Adjacency matrix structures
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Edge List Structure
An edge list can be 
stored in a sequence, 
a vector, a list or a 
dictionary such as a 
hash table
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Edge List Structure
• Vertex object

• element

• reference to position in 
vertex sequence

• Edge object
• element

• origin vertex object

• destination vertex object

• reference to position in 
edge sequence

• Vertex sequence
• sequence of vertex objects

• Edge sequence
• sequence of edge objects

v

u

w

a c

b

a

z
d

u v w z

b c d
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Adjacency List Structure
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Adjacency List Structure

• Edge list structure

• Incidence sequence for 
each vertex

• sequence of references 
to edge objects of 
incident edges

• Augmented edge 
objects

• references to associated 
positions in incidence 
sequences of end 
vertices

u
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w

a b

a

u v w

b
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Adjacency Matrix
Structure
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Adjacency Matrix Structure

• Edge list structure

• Augmented vertex objects
• Integer key (index) 

associated with vertex

• 2D-array adjacency array
• Reference to edge object 

for adjacent vertices

• Null for non nonadjacent 
vertices

• The “old fashioned”
version just has 0 for no 
edge and 1 for edge
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Asymptotic Performance

n2n + mn + mSpace

n2deg(v)mremoveVertex(v)

111insertEdge(v, w, o)

n211insertVertex(o)

111removeEdge(e)

1min(deg(v), deg(w))mareAdjacent (v, w)

ndeg(v)m
incidentEdges(v)

adjacentVertices(v)

Adjacency 
Matrix

Adjacency
List

Edge
List

• n vertices, m edges

• no parallel edges

• no self-loops

• Bounds are “big-Oh”
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Graph Traversal

Depth-First Search

Bread-First Search

Others…
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Subgraphs

A subgraph S of a graph G 
is a graph such that 

� The vertices of S are a subset 
of the vertices of G

� The edges of S are a subset 
of the edges of G

A spanning subgraph of G 
is a subgraph that contains 
all the vertices of G

Subgraph

Spanning subgraph
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Connectivity

A graph is connected if there is a path between every pair 
of vertices

A connected component of a graph G is a maximal 
connected subgraph of G

Connected graph
Non-connected graph with two 

connected components
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Trees and Forests

A (free) tree is an undirected 
graph T such that

� T is connected

� T has no cycles

This definition is different from 
that of a rooted tree

A forest is an undirected 
graph without cycles

The connected components 
of a forest are trees

Tree

Forest
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Spanning Trees and Forests

A spanning tree of a connected 
graph is a spanning subgraph
that is a tree

A spanning tree is not unique 
unless the graph is a tree

Spanning trees have 
applications to the design of 
communication networks

A spanning forest of a graph is 
a spanning subgraph that is a 
forest

Graph

Spanning tree
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Depth-First Search

Depth-first search (DFS) is a 
general technique for 
traversing a graph

A DFS traversal of a graph G 

� Visits all the vertices and edges 
of G

� Determines whether G is 
connected

� Computes the connected 
components of G

� Computes a spanning forest of 
G

DFS on a graph with n
vertices and m edges 
takes O(n + m ) time

DFS can be further 
extended to solve other 
graph problems

� Find and report a path 
between two given vertices

� Find a cycle in the graph

Depth-first search is to 
graphs what Euler tour is 
to binary trees
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Example
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Example (cont.)
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DFS and Maze Traversal 

The DFS algorithm is 
similar to a classic strategy 
for exploring a maze:

� We mark each intersection, 
corner and dead end (vertex) visited

� We mark each corridor (edge ) traversed

� We keep track of the path back to the entrance 
(start vertex) by means of a rope (recursion stack)
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DFS Algorithm
The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the edges of G
in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

DFS(G, w)

else

setLabel(e, BACK)

Algorithm DFS(G)

Input graph G

Output labeling of the edges of G
as discovery edges and
back edges

for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)

for all e ∈ G.edges()

setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED

DFS(G, v)
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Properties of DFS

Property 1
DFS(G, v) visits all the vertices and edges in the 
connected component of v

Property 2
The discovery edges labeled by DFS(G, v) form a 
spanning tree of the connected component of v

DB

A

C

E



Graphs 33

Analysis of DFS

Setting/getting a vertex/edge label takes O(1) time

Each vertex is labeled twice 

� once as UNEXPLORED

� once as VISITED

Each edge is labeled twice

� once as UNEXPLORED

� once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex

DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

� Recall that ΣΣΣΣv deg(v) = 2m

DB

A

C

E
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Path Finding

We can specialize the DFS 
algorithm to find a path between 
two given vertices u and z

We call DFS(G, u) with u as the 
start vertex

We use a stack S to keep track 
of the path between the start 
vertex and the current vertex

As soon as destination vertex z is 
encountered, we return the path 
as the contents of the stack 

Algorithm pathDFS(G, v, z)

setLabel(v, VISITED)

S.push(v)

if  v = z

return S.elements()

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

S.push(e)

pathDFS(G, w, z)

S.pop(e)

else

setLabel(e, BACK)

S.pop(v)
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Cycle Finding

We can specialize the DFS 
algorithm to find a simple 
cycle

We use a stack S to keep 
track of the path between the 
start vertex and the current 
vertex

As soon as a back edge (v, w)
is encountered, we return the 
cycle as the portion of the 

stack from the top to vertex w

Algorithm cycleDFS(G, v)

setLabel(v, VISITED)

S.push(v)

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

S.push(e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

cycleDFS(G, w)

S.pop(e)

else

T ← new empty stack

repeat

o ← S.pop()

T.push(o)

until o = w

return T.elements()

S.pop(v)
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Breadth-First Search

• Breadth-first search 
(BFS) is a general 
technique for traversing 
a graph

• A BFS traversal of a 
graph G 

• Visits all the vertices and 
edges of G

• Determines whether G is 
connected

• Computes the connected 
components of G

• Computes a spanning 
forest of G

• BFS on a graph with n
vertices and m edges 
takes O(n + m ) time

• BFS can be further 
extended to solve other 
graph problems

• Find and report a path 
with the minimum 
number of edges 
between two given 
vertices 

• Find a simple cycle, if 
there is one
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Example
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Example (cont.)
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Example (cont.)
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BFS Algorithm
The algorithm uses a 
mechanism for setting and 
getting “labels” of vertices 
and edges

Algorithm BFS(G, s)

L0 ← new empty sequence
L0.insertLast(s)

setLabel(s, VISITED)

i ← 0

while ¬Li.isEmpty()

Li +1 ← new empty sequence

for all v ∈ Li.elements() 

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

setLabel(w, VISITED)

Li +1.insertLast(w)

else

setLabel(e, CROSS)

i ← i +1

Algorithm BFS(G)

Input graph G

Output labeling of the edges 
and partition of the 
vertices  of G 

for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)

for all e ∈ G.edges()

setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED

BFS(G, v)
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Properties

Notation
Gs: connected component of s

Property 1
BFS(G, s) visits all the vertices and edges of Gs

Property 2
The discovery edges labeled by BFS(G, s) form a 
spanning tree Ts of Gs

Property 3
For each vertex v in Li

� The path of  Ts from s to v has i edges 

� Every path from s to v in Gs has at least i edges

CB

A

E

D

L0

L1

F
L2
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Analysis

• Setting/getting a vertex/edge label takes O(1) time

• Each vertex is labeled twice 

• once as UNEXPLORED

• once as VISITED

• Each edge is labeled twice

• once as UNEXPLORED

• once as DISCOVERY or CROSS

• Each vertex is inserted once into a sequence Li

• Method incidentEdges() is called once for each vertex

• BFS runs in O(n + m) time provided the graph is represented by 
the adjacency list structure

• Recall that ΣΣΣΣv deg(v) = 2m
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Applications

• Using the template method pattern, we can 
specialize the BFS traversal of a graph G to 
solve the following problems in O(n + m) time

• Compute the connected components of G

• Compute a spanning forest of G

• Find a simple cycle in G, or report that G is a forest

• Given two vertices of G, find a path in G between 
them with the minimum number of edges, or report 
that no such path exists
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Digraphs

A digraph is a graph 
whose edges are all directed
� Short for “directed graph”

Applications

� one-way streets

� flights

� task scheduling

A graph G=(V,E) such that

� Each edge goes in one direction:

� Edge (a,b) goes from a to b, but not b to a.

If G is simple, m < n*(n-1).

A

C

E

B

D
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Digraph Application
Scheduling: edge (a,b) means task a must be 
completed before b can be started

The good life

ics141ics131 ics121

ics53 ics52ics51

ics23ics22ics21

ics161

ics151

ics171
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DAGs and Topological Ordering

A directed acyclic graph (DAG) is a 
digraph that has no directed cycles

A topological ordering of a digraph is 
a numbering 

v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i < j

Example: in a task scheduling 
digraph, a topological ordering a task 
sequence that satisfies the 
precedence constraints

Theorem

A digraph admits a topological 
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological 
ordering of G

v1

v2

v3

v4 v5
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write c.s. program

play

Topological Sorting

Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day1

2 3

4 5

6

7

8
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10

11

make cookies 

for professors
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Running time: O(n + m).  How…?

Algorithm for Topological Sorting

Method TopologicalSort(G)

H ←←←← G // Temporary copy of G

n ←←←← G.numVertices()

while H is not empty do

Let v be a vertex with no outgoing edges

Label v ←←←← n

n ←←←← n - 1

Remove v from H
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Topological Sorting 
Algorithm using DFS

Simulate the algorithm by using 
depth-first search

O(n+m) time.

Algorithm topologicalDFS(G, v)

Input graph G and a start vertex v of G

Output labeling of the vertices of G
in the connected component of v

setLabel(v, VISITED)

for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED

w ← opposite(v,e)

if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)

topologicalDFS(G, w)

else

{e is a forward or cross edge}

Label v with topological number n

n ← n - 1

Algorithm topologicalDFS(G)

Input dag G

Output topological ordering of G
n ← G.numVertices()

for all u ∈ G.vertices()

setLabel(u, UNEXPLORED)

for all e ∈ G.edges()

setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()

if getLabel(v) = UNEXPLORED

topologicalDFS(G, v)
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Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example

8

9



Graphs 55

Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example

7

4

8

56

9



Graphs 59

Topological Sorting Example
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Topological Sorting Example
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Topological Sorting Example
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Weighted Graphs

In a weighted graph, each edge has an associated 
numerical value, called the weight of the edge

Edge weights may represent distances, costs, etc.

Example:
� In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports
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Shortest Paths 
Given a weighted graph and two vertices u and v, we want to find a 
path of minimum total weight between u and v.

� Length of a path is the sum of the weights of its edges.

Example:
� Shortest path between Providence and Honolulu

Applications
� Internet packet routing 

� Flight reservations

� Driving directions
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Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path

Property 2:
There is a tree of shortest paths from a start vertex to all the other 
vertices

Example: Tree of shortest paths from Providence
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Dijkstra’s Algorithm

The distance of a vertex v
from a vertex s is the length 
of a shortest path between 
s and v

Dijkstra’s algorithm 
computes the distances of 
all the vertices from a given 
start vertex s

Assumptions:

� the graph is connected

� the edges are undirected

� the edge weights are 
nonnegative

We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices

We store with each vertex v a label 
d(v) representing the distance of v
from s in the subgraph consisting of 
the cloud and its adjacent vertices

At each step

� We add to the cloud the vertex u 

outside the cloud with the smallest 
distance label, d(u)

� We update the labels of the vertices 
adjacent to u
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Edge Relaxation

Consider an edge e ==== (u,z)

such that

� u is the vertex most recently 
added to the cloud

� z is not in the cloud

The relaxation of edge e 

updates distance d(z) as 
follows:

d(z) ← min{d(z),d(u) + weight(e)}

d(z) = 75
d(u) = 50

10

zs
u

d(z) = 60
d(u) = 50

10

zs
u

e

e
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Example
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Example (cont.)
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Dijkstra’s Algorithm

A priority queue stores the 
vertices outside the cloud

� Key: distance

� Element: vertex

Locator-based methods

� insert(k,e) returns a locator 

� replaceKey(l,k) changes the 

key of an item

We store two labels with 
each vertex:

� Distance (d(v) label)

� locator in priority queue

Algorithm DijkstraDistances(G, s)

Q ← new heap-based priority queue

for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else

setDistance(v, ∞∞∞∞)

l ← Q.insert(getDistance(v), v)
setLocator(v,l)

while ¬Q.isEmpty()

u ← Q.removeMin()

for all e ∈ G.incidentEdges(u)
{ relax edge e }

z ← G.opposite(u,e)

r ← getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)

Q.replaceKey(getLocator(z),r)
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Analysis of Dijkstra’s Algorithm
Graph operations
� Method incidentEdges is called once for each vertex

Label operations
� We set/get the distance and locator labels of vertex z O(deg(z)) times

� Setting/getting a label takes O(1) time

Priority queue operations
� Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time

� The key of a vertex in the priority queue is modified at most deg(w) 
times, where each key change takes O(log n) time 

Dijkstra’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure

� Recall that ΣΣΣΣv deg(v) = 2m

The running time can also be expressed as O(m log n) since the 
graph is connected
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Why Dijkstra’s Algorithm Works
Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.

CB

A

E

D

F

0

327

5 8

48

7 1

2 5

2

3 9

� Suppose it didn’t find all shortest 
distances. Let F be the first wrong 
vertex the algorithm processed.

� When the previous node, D, on the 
true shortest path was considered, 
its distance was correct.

� But the edge (D,F) was relaxed at 
that time!

� Thus, so long as d(F)>d(D), F’s 
distance cannot be wrong.  That is, 
there is no wrong vertex.
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Why It Doesn’t Work for 
Negative-Weight Edges

� If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud. 
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6

0 -8

Dijkstra’s algorithm is based on the greedy 
method. It adds vertices by increasing distance.

C’s true distance is 1, but 
it is already in the cloud 

with d(C)=5!
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Bellman-Ford Algorithm

Works even with negative-
weight edges

Must assume directed edges 
(for otherwise we would have 
negative-weight cycles)

Iteration i finds all shortest 
paths that use i edges.

Running time: O(n m).

Can be extended to detect a 
negative-weight cycle if it exists 

� How?

Algorithm BellmanFord(G, s)

for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else

setDistance(v, ∞∞∞∞)
for i ← 1 to n-1 do

for each e ∈ G.edges()
{ relax edge e }

u ← G.origin(e)
z ← G.opposite(u,e)

r ← getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)
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Bellman-Ford Example
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DAG-based Algorithm

Works even with 
negative-weight edges

Uses topological order

Doesn’t use any fancy 
data structures

Is much faster than 
Dijkstra’s algorithm

Running time: O(n+m).

Algorithm DagDistances(G, s)

for all v ∈ G.vertices()

if v = s
setDistance(v, 0)

else

setDistance(v, ∞∞∞∞)
Perform a topological sort of the vertices

for u ← 1 to n do    {in topological order}
for each e ∈ G.outEdges(u)

{ relax edge e }

z ← G.opposite(u,e)

r ← getDistance(u) + weight(e)

if r < getDistance(z)
setDistance(z,r)
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DAG Example
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Minimum Spanning Trees
Spanning subgraph

� Subgraph of a graph G
containing all the vertices of G

Spanning tree

� Spanning subgraph that is 
itself a (free) tree

Minimum spanning tree (MST)

� Spanning tree of a weighted 
graph with minimum total edge 
weight

Applications

� Communications networks

� Transportation networks
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Cycle Property

Cycle Property:

� Let T be a minimum spanning 
tree of a weighted graph G

� Let e be an edge of G that is 
not in T and C let be the cycle 
formed by e with T

� For every edge f of C,

weight(f) ≤≤≤≤ weight(e)

Proof:

� By contradiction

� If weight(f) > > > > weight(e) we can 
get a spanning tree of smaller 
weight by replacing e with f

8
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2
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6

7

7

9

8

e

C

f

8

4

2
3

6

7

7

9

8

C

e

f

Replacing f with e yields
a better spanning tree 
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U V

Partition Property
Partition Property:

� Consider a partition of the vertices of 
G into subsets U and V

� Let e be an edge of minimum weight 
across the partition

� There is a minimum spanning tree of 
G containing edge e

Proof:

� Let T be an MST of G

� If T does not contain e, consider the 
cycle C formed by e with T and let  f
be an edge of C across the partition

� By the cycle property,
weight(f) ≤≤≤≤ weight(e)

� Thus, weight(f) = = = = weight(e)

� We obtain another MST by replacing 
f  with e

8

4

2
8

5

7

3

9

8 e

f

8
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2
8

5

7

3

9

8 e

f

Replacing f with e yields

another MST

U V
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Kruskal’s Algorithm

A priority queue stores 
the edges outside the 
cloud

� Key: weight

� Element: edge

At the end of the 
algorithm

� We are left with one cloud 
that encompasses the MST

� A tree T which is our MST

Algorithm KruskalMST(G)

for each vertex v in G do

define a Cloud(v) of � {v}

let Q be a priority queue.

Insert all edges into Q using their 

weights as the key

T � ∅∅∅∅

while T has fewer than n-1 edges do

edge e = Q.removeMin()

Let u, v be the endpoints of e

if Cloud(v) ≠≠≠≠ Cloud(u) then

Add edge e to T

Merge Cloud(v) and Cloud(u)

return T
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Data Structure for Kruskal
Algorithm
The algorithm maintains a forest of trees

An edge is accepted it if connects distinct trees

We need a data structure that maintains a partition, 
i.e., a collection of disjoint sets, with the operations:

-find(u): return the set 

storing u

-union(u,v): replace 
the sets storing u and v 
with their union
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Representation of a 
Partition

Each set is stored in a sequence

Each element has a reference back to the set

� operation find(u) takes O(1) time, and returns the set of 
which u is a member.

� in operation union(u,v), we move the elements of the 
smaller set to the sequence of the larger set and update 
their references

� the time for operation union(u,v) is min(nu,nv), where nu

and nv are the sizes of the sets storing u and v

Whenever an element is processed, it goes into a 
set of size at least double, hence each element is 
processed at most log n times
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Partition-Based Implementation
A partition-based version of Kruskal’s Algorithm 
performs cloud merges as unions and tests as finds.

Algorithm Kruskal(G):

Input: A weighted graph G.

Output: An MST T for G.

Let P be a partition of the vertices of G, where each vertex forms a separate set.

Let Q be a priority queue storing the edges of G, sorted by their weights

Let T be an initially-empty tree

while Q is not empty do

(u,v) ← Q.removeMinElement()

if P.find(u) != P.find(v) then

Add (u,v) to T

P.union(u,v)

return T

Running time: 
O((n+m)log n)
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Kruskal
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Prim-Jarnik’s Algorithm
Similar to Dijkstra’s algorithm (for a connected graph)

We pick an arbitrary vertex s and we grow the MST as a 
cloud of vertices, starting from s

We store with each vertex v a label d(v) = the smallest 
weight of an edge connecting v to a vertex in the cloud 

At each step:

� We add to the cloud the 
vertex u outside the cloud 
with the smallest distance 
label

� We update the labels of the 
vertices adjacent to u
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Prim-Jarnik’s Algorithm (cont.)
A priority queue stores 
the vertices outside the 
cloud
� Key: distance

� Element: vertex

Locator-based methods
� insert(k,e) returns a 

locator 

� replaceKey(l,k) changes 
the key of an item

We store three labels 
with each vertex:
� Distance

� Parent edge in MST

� Locator in priority queue

Algorithm PrimJarnikMST(G)

Q ← new heap-based priority queue

s ← a vertex of G

for all v ∈ G.vertices()

if v = s : setDistance(v, 0)

else : setDistance(v, ∞∞∞∞)

setParent(v, ∅∅∅∅)

l ← Q.insert(getDistance(v), v)

setLocator(v,l)

while ¬Q.isEmpty()

u ← Q.removeMin()

for all e ∈ G.incidentEdges(u)

z ← G.opposite(u,e)

r ← weight(e)

if r < getDistance(z)

setDistance(z,r)

setParent(z,e)

Q.replaceKey(getLocator(z),r)
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Example (contd.)
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Analysis
Graph operations
� Method incidentEdges is called once for each vertex

Label operations
� We set/get the distance, parent and locator labels of vertex z O(deg(z))

times

� Setting/getting a label takes O(1) time

Priority queue operations
� Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time

� The key of a vertex w in the priority queue is modified at most deg(w) 
times, where each key change takes O(log n) time 

Prim-Jarnik’s algorithm runs in O((n + m) log n) time provided the 
graph is represented by the adjacency list structure

� Recall that ΣΣΣΣv deg(v) = 2m

The running time is O(m log n) since the graph is connected


