Maps and Dictionaries

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++
Goodrich, Tamassia and Mount (Wiley, 2004)

Outline
#Maps (9.1)

#Hash tables (9.2)
#Dictionaries (9.3)

Maps and Dictionaries

Maps & Dictionaries

Map ADT and Dictionary ADT:

= model a searchable collection of key-value entries
= Main operations are searching, inserting, and deleting entries

Map: multiple entries @ Dictionary: multiple entries

with the same key with the same key
are not allowed are allowed

Map applications: # Dictionary applications:
= address book = word-definition pairs

s Student-record database m credit card authorizations

= DNS mapping of host names (e.q.,
datastructures.net) to internet IP
addresses (e.g., 128.148.34.101)

Maps and Dictionaries 3

Maps

Maps and Dictionaries

The Map ADT

Map ADT methods:

get(k): if the map M has an entry with key k, return its
associated value; else, return null

@ put(k, v): insert entry (k, v) into the map M; if key k is
not already in M, then return null; else, return old value
associated with k

remove(k): if the map M has an entry with key k, remove
it from M and return its associated value; else, return null

@ size(), iIsEmpty()
keys(): return an iterator of the keys in M
values(): return an iterator of the values in M

Maps and Dictionaries 5

Example

Operation Output Map

iSEmpty() true 1))

put(5,A4) null (5,A4)

put(7,58) null (5,A),(7,B)

put(2,0) null (5,A),(7,8),(2,0)
put(8,D) null (5,A),(7,8),(2,0),(8,D)
put(2,£) C (5,A),(7,B),(2,E),(8,D)
get(7) B (5,A),(7,B),2,E),8,D)
get(4) null (5,A),(7,B),2,E),8,D)
get(2) E (5,A),(7,B),2,E),(8,D)
size() 4 (5,A),(7,B),2,E),(8,D)
remove(5) A (7,8),(2,£6),(8,D)
remove(2) E (7,B),(8,D)

get(2) null (7,B),(8,D)

iSEmpty() false (7,B),(8,D)

Maps and Dictionaries

#include <iostream>
#include <map> http://kengine.sourceforge.net/tutorial/g/stdmap-eng.htm

#include <string>
using namespace std;

typedef map<string, string> TStrStrMap;
typedef pair<string, string> TStrStrPair;

int main(int argc, char *argv[])

{
TStrStrMap tMap;

tMap.insert(TStrStrPair("yes", "no™));

tMap.insert(TStrStrPair("up”, "down"));
tMap.insert(TStrStrPair("left”, "right™));
tMap.insert(TStrStrPair("good", "bad"));

string key;
cout << "Enter word: " << endl;
cin >> key;
Maps and Dictionaries 7

string strValue = tMap[key];
if(strValue!="")

cout << "Opposite: " << strValue << endl; // Show value
else

{
TStrStrMap::iterator p;
bool bFound=false;
// Show key
for(p = tMap.begin(); p!=tMap.end(); ++p) {
string strkey= p->second;
if(key == strKey) {
// Return key
std::cout << "Opposite: " << p->first << std::endl;
bFound = true;
)
}
if('bFound) // If not found opposite word
cout << "Word not in map." << endl;
}
return 0O;

¥

Maps and Dictionaries 8

Dictionary ADT

The dictionary ADT models a # Dictionary ADT methods:

searchable collection of key- = find(k): if the dictionary has an
value entries: ordered and entry with key k, returns it,
unordered. else, returns null

The main operations of a = findAll(k): returns an iterator of
dictionary are searching, all entries with key k

inserting, and deleting items » insert(k, 0): inserts and returns

Multiple items with the same the entry (k, o)
key are allowed o

L = remove(e): remove the entry e
Applications:

from the dictionary

= word-definition pairs = entries(): returns an iterator of

m credit card authorizations the entries in the dictionary

= DNS mapping of host nhames : :
(e.g., datastructures.net) to size(), IsEmpty()

internet IP addresses (e.q.,
128.148.34.101)

Maps and Dictionaries 9

Example

Operation
insert(5,A4)
insert(7,6)
insert(2,0)
insert(8,D)
insert(2,£)
find(7)
find(4)
find(2)
findAll(2)
size()
remove(find(5))
find(5)

Pham Bao Son - DSA

Output
(5,4)

(7,B)

(2,0
(8,D)
(2,£)

(7,B)

null

(2,0
gZ,C),(Z,E)

(5,A)
null

Dictionary

(5,A)

(5,A),(7,B)

(5,A),(7,B8),(2,0)
(5,A4),(7,B8),(2,0),(8,D)
(5,A)(7,8),2,0,8,D),2,E)
(5,A),(7,B),2,0,8,D),2,E)
(5,A)(7,8),2,0,8,D),2,E)
(5,A)(7,8),2,0,8,D),2,E)
(5,A)(7,8),2,0,8,D),2,E)
(5,A)(7,8),2,0,8,D),2,E)
(7,B8),(2,0,8,D),2,£)
(7,B8),(2,0,8,D),2,£)

Maps and Dictionaries 10

Implement Dictionary ADT

#Unordered dictionary
m List-based dictionary
= Hash table

#0rdered dictionary
= Array-based dictionary — search table

Maps and Dictionaries

11

Hash Tables

L= O

Maps and Dictionaries

%)
*—— 025-612-0001
——| 981-101-0002
%)
T 451-229-0004

12

Hash table

4 Expected time of search, put: O(1)
@ Bucket array
4 Hash function

il | .] 4 5 iy T N 0

il.In (1.0 (A (7.0

Maps and Dictionaries

13

Hash Functions and Hash Tables

A hash function 2 maps keys of a given type to
integers in a fixed interval [0, N — 1]

s Example: h(x) =x mod N
is a hash function for integer keys

= The integer h(x) is called the hash value of key x

A hash table for a given key type consists of
= Hash function &
= Array (called table) of size N

When implementing a map with a hash table, the goal is to
store item (k, o) at index i = h(x)

Maps and Dictionaries 14

Example

We design a hash table for 0
a map storing entries as 1
(SSN, Name), where SSN %
(social security number) is a A
nine-digit positive integer

Our hash table uses an
array of size N = 10,000 and ggg;

the hash function 0999
h(x) = last four digits of x

Maps and Dictionaries

%)
1 025-612-0001
*— 981-101-0002
%)
—— 451-229-0004
%)
1 200-751-9998

15

Hash Functions

A hash function is
usually specified as the
composition of two
functions:

Hash code:
h,: keys — integers

Compression function:
h,: integers — [0, N — 1]

The hash code map is
applied first, and the

compression ma

pis

applied next on the

result, i.e.,

h(x) = h,(h,(x))

The goal of the
function isto “c

nash
isperse”

the keys in an a
random way

pparently

m minimize collisions

Maps and Dictionaries

16

Hash Codes

Memory address: # Component sum:
= We reinterpret the memory = We partition the bits of the
address of the key object as an key into components of
integer fixed length (e.g., 16 or 32
= Good in general, except for bits) and we sum the
numeric and string keys (same key components (ignoring
should have the same hash code) overflows)
& Integer cast: = Suitable for numeric keys

_ _ of fixed length greater than
= We reinterpret the bits of the key or equal to the number of

as an integer bits of the integer type
= Suitable for keys of length less (e.g., long and double)

than or equal to the number of bits
of the integer type (e.g., byte,
short, int and float in C/C++)

Maps and Dictionaries 17

Hash Codes (cont.)

Polynomial accumulation: # Polynomial p(z) can be
= Order is important evaluated in O(n) time
= We partition the bits of the key into a using Horner’s rule:
sequence of components of fixed = The following
length (e.g., 8, 16 or 32 bits) polynomials are
a,a, ...a, successively computed,
= We evaluate the polynomial each from the previous
p)=a_,+a 2 +a 2>+ ... +ag"! one in O(1) time
at a fixed value z, ignoring overflows Pyz) =4,
» Especially suitable for strings (e.g., the PiR)=a,; +zp; ()
choice z = 33 gives at most 6 collisions =12 ...n-1)
on a set of 50,000 English words) # We have p(z)=p, (2)

Maps and Dictionaries 18

Compression Functions

Multiply, Add and Divide
(MAD):
s h,(y)=(ay +b) mod N

s Nis prime, a and b are
nonnegative integers

Division:
m ,(y) =y mod N

= The size N of the hash
table is usually chosen
to be a prime

_ . such that
- Reason: reduce collisions AN£0
- How: number theory and a mo. _
is beyond the scope of this Otherwise, every integer would
course map to the same value b

Maps and Dictionaries 19

-
® A =X ey

Collision Handling

Collisions occur when different elements are
mapped to the same cell

Ways to handle collisions
= Separate chaining

= Linear probing
= Double hashing

*025-612-0001

W= O
e IQIQ] ¢ R

*451-229-0004/—981-101-0004

Separate chaining

Maps and Dictionaries 20

Separate chaining

. 02
@ We_ let each cell in the table | *1 .G3s6150001
point to a linked list of 2 [
entries that map there 3@
Load factor: n/N <1 4 | *1—451-229-0004—981-101-0004

Separate chaining is simple, but requires additional
memory outside the table

#® Example:

= Assume you have a hash table H with N=9 slots (H[0,8])
and let the hash function be h(k) = k mod N.

= Demonstrate (by picture) the insertion of the following keys into
a hash table with collisions resolved by chaining.

+ 5,28, 19, 15, 20, 33, 12, 17, 10

Maps and Dictionaries 21

Map Methods with Separate Chaining
used for Collisions

@ Delegate operations to a list-based map at each cell:

Algorithm get(4):

Output: The value associated with the key kin the map, or null if there is no
entry with key equal to kin the map

return A A K)].get(k) {delegate the get to the list-based map at Al AK)]}

Algorithm put(4):
Output: If there is an existing entry in our map with key equal to 4, then we
return its value (replacing it with v); otherwise, we return null
t=ANK].put(kv) {delegate the put to the list-based map at A AK)]}
if £= null then {kis a new key}
n=n+1
return ¢

Algorithm remove(4):

Output: The (removed) value associated with key k& in the map, or null if there
is no entry with key equal to kin the map

t = AL K)].remove(k) {delegate the remove to the list-based map at A A K]}

if £+ null then {k was found}
n=n-1
return ¢

Pham Bao Son - DSA
Maps and Dictionaries 22

Linear Probing

4 Open addressing: the
colliding item is placed in a
different cell of the table

4 Linear probing handles
collisions by placing the colliding
item in the next (circularly)
available table cell

Each table cell inspected is
referred to as a "probe”

4« Colliding items lump together,
causing future collisions to cause
a longer sequence of probes

#® Example:
s h(x)=x mod 13

= Insert keys 18, 41, 22,
44, 59, 32, 31, 73,
in this order

01 23456 7389101112

4

41 18(44(59|32(22(31]73

01 23456 7389101112

Maps and Dictionaries 23

Search with Linear Probing

Consider a hash table A
that uses linear probing

#® get(k)
s We start at cell r(k)
= \We probe consecutive
locations until one of the
following occurs

» An item with key k is found,
or

+ An empty cell is found, or

+ N cells have been
unsuccessfully probed

N2

Algorithm get(k)
i < hk)
p<0
repeat
c — Ali]
ifc=0
return null
elseif c.key () =k
return c.element()
else
i< (i+1)modN
p<p+1
until p=N
return null

Maps and Dictionaries

24

Updates with Linear Probing

To handle insertions and @ put(k, o)

deletions, we introduce a = We throw an exception if the

special object, called table is full

AVAILABLE, which replaces = We start at cell h(k)

deleted elements = We probe consecutive cells
until one of the following

remove(k)
= We search for an entry with key &

OCCUrs
+ A cell i is found that is either

» If such an entry (k, o) is found, empty or stores
we replace it with the special item AVAILABLE, or
AVAILABLE and we return * N cells have been
element o unsuccessfully probed

We store entry (k, o) in cell i
= Else, we return null - ore entry (k, o) In cell ¢

Maps and Dictionaries 25

Double Hashing

Double hashing uses a

secondary hash function d(k) # Common choice of

compression function for

and handles collisions by the secondary hash

placing an item in the first function:

available cell of the series d,(k) = g — (k mod q)

h(k,i) = (h(k) +i*d(k)) mod N where

fori=0, 1,..., N—1 s g<N
The secondary hash function = g isaprime

d(k) cannot have zero values @ The possible values for
The table size N must be a d,(k) frg .

prime to allow probing of all
the cells

Maps and Dictionaries 26

Example of Double Hashing

Consider a hash
table storing integer
keys that handles
collision with double
hashing

= N=13
m h(k)=k mod 13
m dk)=7—-kmod7

Insert keys 18, 41,
22,44, 59, 32, 31,
/3, in this order

k hk) dk) Probes

18
41
22
44
59
32
31
73

5

COU1TOoON U1 ON

3

AP WA OUTIO

5

10

CoU1O I |UT1|WO [N

01234546 7189101112

4

31

41

18

32

59

/3

22

44

01234546 7189101112

Maps and Dictionaries

27

Performance of Hashing

In the worst case, searches,

insertions and removals on a hash

table take O(n) time

The worst case occurs when all
the keys inserted into the map

collide

The load factor = n/N affects the

performance of a hash table

Assuming that the hash values are
like random numbers, it can be
shown that the expected number
of probes for an insertion with

open addressing is
1/(1-a

®

4

@

@

The expected running time
of all the dictionary ADT
operations in a hash table is
o(1)

In practice, hashing is very
fast provided the load factor
is not close to 100%

Applications of hash tables:
= small databases
= compilers
s browser caches

Open addressing is not
faster than chaining method
if space is an issue.

Maps and Dictionaries 28

Hash Table Implementation of
Dictionary ADT

#Unordered dictionaries.

#\We can also create a hash-table
dictionary implementation.

#If we use separate chaining to handle
collisions, then each operation can be
delegated to a list-based dictionary
stored at each hash table cell.

Maps and Dictionaries 29

