
Sorting

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++

Goodrich, Tamassia and Mount (Wiley, 2004)

Sorting 2

Outline

Bubble Sort

Insertion Sort

Merge Sort

Quick Sort

Sorting 3

Bubble Sort

Algorithm

1. Compare each pair of adjacent elements from
the beginning of an array and, if they are in
reversed order, swap them.

2. If at least one swap has been done, repeat
step 1.

Reference: http://www.algolist.net/Algorithms/Sorting/Bubble_sort

1st pass

2nd pass

3rd pass

4th pass

Sorting 5

Bubble Sort pseudocode

Algorithm bubbleSort(S, C)

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

do

swapped ← false

for each i in 1 to length(S) – 1 inclusive do:

if S[i - 1] > S[i] according to C then

swap(S[i - 1], S[i])

swapped ← true

while swapped

Sorting 6

For pass in 1 ... n-1:

for j in 1..n-pass

if S[j-1]>S[j]:

swap(s[j-1], s[j])

For i in 1 ... n-1:

for j in 1..n-i

if S[j-1]>S[j]:

swap(s[j-1], s[j])

Sorting 7

Bubble Sort performance

Worst-case & average-case: O(n2)

Best-case: (over an already-sorted list) :O(n)

Sorting 8

Insertion Sort

Reference: http://www.algolist.net/Algorithms/Sorting/Insertion_sort

1st pass

2nd pass

3rd pass

4th pass

Sorting 10

Insertion Sort pseudocode

Algorithm insertionSort(S, C)

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

for i from 1 to length(S) do

j ← i

while j > 0 && S[j - 1] > S[j] then

swap(S[j - 1], S[j])

j--

Sorting 11

Insertion Sort performance

Worst-case & average-case: O(n2)

Best-case: (over an already-sorted list) :O(n)

adaptive (performance adapts to the initial order of
elements);

stable (insertion sort retains relative order of the same
elements);

in-place (requires constant amount of additional
space);

online (new elements can be added during the sort).

Sorting 12

Divide-and-Conquer
Divide-and conquer is a general algorithm design
paradigm:

� Divide: divide the input data S
in two or more
disjoint subsets S1, S2, …

� Recur: solve the
subproblems recursively

� Conquer: combine the solutions for S1, S2, …, into a
solution for S

The base case for the recursion are subproblems of
constant size

Analysis can be done using recurrence equations

Merge Sort

7 2  9 4 →→→→ 2 4 7 9

7  2 →→→→ 2 7 9  4 →→→→ 4 9

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4

Sorting 14

Merge-Sort

Merge-sort on an input
sequence S with n elements
consists of three steps:

� Divide: partition S into two
sequences S1 and S2 of
about n/2 elements each

� Recur: recursively sort S1

and S2

� Conquer: merge S1 and S2

into a unique sorted
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2) ← partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S ← merge(S1, S2)

Sorting 15

Merging Two Sorted Sequences
The conquer step of
merge-sort consists of
merging two sorted
sequences A and B into
a sorted sequence S

containing the union of
the elements of A and B

Merging two sorted
sequences, each with
n/2 elements and
implemented by means
of a doubly linked list,
takes O(n) time

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each

Output sorted sequence of A ∪ B

S ← empty sequence

while ¬A.isEmpty() ∧∧∧∧ ¬B.isEmpty()

if A.first().element() < B.first().element()

S.insertLast(A.remove(A.first()))

else

S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
S.insertLast(A.remove(A.first()))

while ¬B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Sorting 16

Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree

� each node represents a recursive call of merge-sort and stores
� unsorted sequence before the execution and its partition

� sorted sequence at the end of the execution

� the root is the initial call

� the leaves are calls on subsequences of size 0 or 1

7 2  9 4 →→→→ 2 4 7 9

7  2 →→→→ 2 7 9  4 →→→→ 4 9

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4

Sorting 17

Execution Example

Partition

7 2 9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7 2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 18

Execution Example (cont.)

Recursive call, partition

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7 2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 19

Execution Example (cont.)

Recursive call, partition

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 20

Execution Example (cont.)

Recursive call, base case

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 21

Execution Example (cont.)

Recursive call, base case

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 22

Execution Example (cont.)

Merge

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 23

Execution Example (cont.)

Recursive call, …, base case, merge

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

9 →→→→ 9 4 →→→→ 4

Sorting 24

Execution Example (cont.)

Merge

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 8 6

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 25

Execution Example (cont.)

Recursive call, …, merge, merge

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 6 8

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 26

Execution Example (cont.)

Merge

7 2  9 4 →→→→ 2 4 7 9 3 8 6 1 →→→→ 1 3 6 8

7  2 →→→→ 2 7 9 4 →→→→ 4 9 3 8 →→→→ 3 8 6 1 →→→→ 1 6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7 2 9 4  3 8 6 1 →→→→ 1 2 3 4 6 7 8 9

Sorting 27

Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)

� at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)

� we partition and merge 2i sequences of size n////2i

� we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

size#seqsdepth

………

n////2i2ii

n////221

n10

Sorting 28

Analysis of Merge-Sort using
Recurrence Relations

• Merge(S1,S2) takes time
O(n), where n is the size of
S1 and S2

• T(n) = 2T(n/2) + O(n)

• Solving, get T(n)=O(nlogn)

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2) ← partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S ← merge(S1, S2)

Quick-Sort

7 4 9 6 2 →→→→ 2 4 6 7 9

4 2 →→→→ 2 4 7 9 →→→→ 7 9

2 →→→→ 2 9 →→→→ 9

Sorting 30

Quick-Sort

Quick-sort is a randomized
sorting algorithm based on the
divide-and-conquer paradigm:

� Divide: pick a random
element x (called pivot) and
partition S into

� L elements less than x

� E elements equal x

� G elements greater than x

� Recur: sort L and G

� Conquer: join L, E and G

x

x

L GE

x

Sorting 31

Partition
We partition an input
sequence as follows:

� We remove, in turn, each
element y from S and

� We insert y into L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal is
at the beginning or at the end
of a sequence, and hence
takes O(1) time

Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences

x ← S.remove(p)

while ¬S.isEmpty()

y ← S.remove(S.first())

if y < x

L.insertLast(y)

else if y = x

E.insertLast(y)

else { y > x }

G.insertLast(y)

return L, E, G

Sorting 32

Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

� Each node represents a recursive call of quick-sort and stores

� Unsorted sequence before the execution and its pivot

� Sorted sequence at the end of the execution

� The root is the initial call

� The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 →→→→ 2 4 6 7 9

4 2 →→→→ 2 4 7 9 →→→→ 7 9

2 →→→→ 2 9 →→→→ 9

Sorting 33

Execution Example

Pivot selection

7 2 9 4 →→→→ 2 4 7 9

2 →→→→ 2

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 89 4 →→→→ 4 9

9 →→→→ 9 4 →→→→ 4

Sorting 34

Execution Example (cont.)

Partition, recursive call, pivot selection

2 4 3 1 →→→→ 2 4 7 9

9 4 →→→→ 4 9

9 →→→→ 9 4 →→→→ 4

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 82 →→→→ 2

Sorting 35

Execution Example (cont.)

Partition, recursive call, base case

2 4 3 1 →→→→→→→→ 2 4 7

1 →→→→ 1 9 4 →→→→ 4 9

9 →→→→ 9 4 →→→→ 4

7 2 9 4 3 7 6 1 →→→→ →→→→ 1 2 3 4 6 7 8 9

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 8

Sorting 36

Execution Example (cont.)

Recursive call, …, base case, join

3 8 6 1 →→→→ 1 3 8 6

3 →→→→ 3 8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

Sorting 37

Execution Example (cont.)

Recursive call, pivot selection

7 9 7 1 →→→→ 1 3 8 6

8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9

Sorting 38

Execution Example (cont.)

Partition, …, recursive call, base case

7 9 7 1 →→→→ 1 3 8 6

8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 8 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9

Sorting 39

Execution Example (cont.)

Join, join

7 9 7 →→→→ 17 7 9

8 →→→→ 8

7 2 9 4 3 7 6 1 →→→→ 1 2 3 4 6 7 7 9

2 4 3 1 →→→→ 1 2 3 4

1 →→→→ 1 4 3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9

Sorting 40

Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

One of L and G has size n − 1 and the other has size 0

The running time is proportional to the sum

n + (n − 1) + … + 2 + 1

Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…

Sorting 41

Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

� Good call: the sizes of L and G are each less than 3s/4
� Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
� 1/2 of the possible pivots cause good calls:

7 9 7 1 →→→→ 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 61

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots

Sorting 42

Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in order to
get k heads is 2k

For a node of depth i, we expect

� i/2 ancestors are good calls

� The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have

� For a node of depth 2log4/3n,
the expected input size is one

� The expected height of the
quick-sort tree is O(log n)

The amount or work done at the
nodes of the same depth is O(n)

Thus, the expected running time of
quick-sort is O(n log n)

Sorting 43

In-Place Quick-Sort
Quick-sort can be implemented to run
in-place

In the partition step, we use replace
operations to rearrange the elements
of the input sequence such that

� the elements less than the pivot
have rank less than h

� the elements equal to the pivot
have rank between h and k

� the elements greater than the
pivot have rank greater than k

The recursive calls consider

� elements with rank less than h

� elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and r

Output sequence S with the
elements of rank between l and r
rearranged in increasing order

if l ≥ r

return

i ← a random integer between l and r

x ← S.elemAtRank(i)

(h, k) ← inPlacePartition(x)

inPlaceQuickSort(S, l, h − 1)

inPlaceQuickSort(S, k + 1, r)

Sorting 44

In-Place Partitioning
Perform the partition using two indices to split S into L and EΥG (a
similar method can split EΥG into E and G).

Repeat until j and k cross:

� Scan j to the right until finding an element > x.

� Scan k to the left until finding an element < x.

� Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

Sorting 45

Summary of Sorting Algorithms

in-place, randomized

fastest (good for large inputs)

O(n log n)

expected
quick-sort

sequential data access

fast (good for huge inputs)
O(n log n)merge-sort

in-place

fast (good for large inputs)
O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

bubble-sort

Algorithm Notes

in-place

slow (good for small inputs)

in-place

slow (good for small inputs)

