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Outline

Bubble Sort

Insertion Sort

Merge Sort

Quick Sort
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Bubble Sort

Algorithm

1. Compare each pair of adjacent elements from 
the beginning of an array and, if they are in 
reversed order, swap them.

2. If at least one swap has been done, repeat 
step 1.

Reference: http://www.algolist.net/Algorithms/Sorting/Bubble_sort



1st pass

2nd pass

3rd pass

4th pass
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Bubble Sort pseudocode

Algorithm bubbleSort(S, C)

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

do

swapped ← false

for each i in 1 to length(S) – 1 inclusive do:

if S[i - 1] > S[i] according to C then

swap(S[i - 1], S[i])

swapped ← true

while swapped
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For pass in 1 ... n-1:

for j in 1..n-pass

if S[j-1]>S[j]:

swap(s[j-1], s[j])

For i in 1 ... n-1:

for j in 1..n-i

if S[j-1]>S[j]:

swap(s[j-1], s[j])
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Bubble Sort performance

Worst-case & average-case: O(n2)

Best-case: (over an already-sorted list) :O(n) 
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Insertion Sort

Reference: http://www.algolist.net/Algorithms/Sorting/Insertion_sort



1st pass

2nd pass

3rd pass

4th pass
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Insertion Sort pseudocode

Algorithm insertionSort(S, C)

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

for i from 1 to length(S) do

j ← i

while j > 0 && S[j - 1] > S[j] then

swap(S[j - 1], S[j])

j--
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Insertion Sort performance

Worst-case & average-case: O(n2)

Best-case: (over an already-sorted list) :O(n) 

adaptive (performance adapts to the initial order of 
elements);

stable (insertion sort retains relative order of the same 
elements);

in-place (requires constant amount of additional 
space);

online (new elements can be added during the sort).
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Divide-and-Conquer
Divide-and conquer is a general algorithm design 
paradigm:

� Divide: divide the input data S
in two or more 
disjoint subsets S1, S2, …

� Recur: solve the
subproblems recursively

� Conquer: combine the solutions for S1, S2, …, into a 
solution for S

The base case for the recursion are subproblems of 
constant size

Analysis can be done using recurrence equations



Merge Sort

7  2  9  4  →→→→ 2  4  7  9

7  2  →→→→ 2  7 9  4  →→→→ 4  9

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4
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Merge-Sort

Merge-sort on an input 
sequence S with n elements 
consists of three steps:

� Divide: partition S into two 
sequences S1 and S2 of 
about n/2 elements each

� Recur: recursively sort S1

and S2

� Conquer: merge S1 and S2 

into a unique sorted 
sequence

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2) ← partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S ← merge(S1, S2)



Sorting 15

Merging Two Sorted Sequences
The conquer step of 
merge-sort consists of 
merging two sorted 
sequences A and B into 
a sorted sequence S 

containing the union of 
the elements of A and B

Merging two sorted 
sequences, each with 
n/2 elements and 
implemented by means 
of a doubly linked list, 
takes O(n) time

Algorithm merge(A, B)

Input sequences A and B with
n/2 elements each 

Output sorted sequence of A ∪ B

S ← empty sequence

while ¬A.isEmpty()  ∧∧∧∧ ¬B.isEmpty()

if A.first().element() < B.first().element()

S.insertLast(A.remove(A.first()))

else

S.insertLast(B.remove(B.first()))

while ¬A.isEmpty()
S.insertLast(A.remove(A.first()))

while ¬B.isEmpty()
S.insertLast(B.remove(B.first()))

return S
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Merge-Sort Tree
An execution of merge-sort is depicted by a binary tree

� each node represents a recursive call of merge-sort and stores
� unsorted sequence before the execution and its partition

� sorted sequence at the end of the execution

� the root is the initial call 

� the leaves are calls on subsequences of size 0 or 1

7  2  9  4  →→→→ 2  4  7  9

7  2  →→→→ 2  7 9  4  →→→→ 4  9

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4
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Execution Example

Partition

7  2  9  4  →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2  →→→→ 2  7 9  4  →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, partition

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2  →→→→ 2  7 9  4  →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, partition

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2 →→→→ 2  7 9  4  →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, base case

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2 →→→→ 2  7 9  4  →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, base case

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2 →→→→ 2  7 9  4  →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Merge

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2 →→→→ 2  7 9  4  →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, …, base case, merge

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2 →→→→ 2  7 9  4 →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9

9 →→→→ 9 4 →→→→ 4
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Execution Example (cont.)

Merge

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1  →→→→ 1  3  8  6

7  2 →→→→ 2  7 9  4 →→→→ 4  9 3  8  →→→→ 3  8 6  1  →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Recursive call, …, merge, merge

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1 →→→→ 1  3  6  8

7  2 →→→→ 2  7 9  4 →→→→ 4  9 3  8 →→→→ 3  8 6  1 →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Execution Example (cont.)

Merge

7  2  9  4 →→→→ 2  4  7  9 3  8  6  1 →→→→ 1  3  6  8

7  2 →→→→ 2  7 9  4 →→→→ 4  9 3  8 →→→→ 3  8 6  1 →→→→ 1  6

7 →→→→ 7 2 →→→→ 2 9 →→→→ 9 4 →→→→ 4 3 →→→→ 3 8 →→→→ 8 6 →→→→ 6 1 →→→→ 1

7  2  9  4  3  8  6  1 →→→→ 1  2  3  4  6  7  8  9
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Analysis of Merge-Sort
The height h of the merge-sort tree is O(log n)

� at each recursive call we divide in half the sequence, 

The overall amount or work done at the nodes of depth i is O(n)

� we partition and merge 2i sequences of size n////2i

� we make 2i+1 recursive calls

Thus, the total running time of merge-sort is O(n log n)

size#seqsdepth

………

n////2i2ii

n////221

n10
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Analysis of Merge-Sort using 
Recurrence Relations

• Merge(S1,S2) takes time 
O(n), where n is the size of 
S1 and S2

• T(n) = 2T(n/2) + O(n)

• Solving, get T(n)=O(nlogn)

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted

according to C

if S.size() > 1

(S1, S2) ← partition(S, n/2)

mergeSort(S1, C)

mergeSort(S2, C)

S ← merge(S1, S2)



Quick-Sort

7  4  9  6 2  →→→→ 2  4  6 7  9

4 2  →→→→ 2  4 7 9  →→→→ 7 9

2 →→→→ 2 9 →→→→ 9
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Quick-Sort

Quick-sort is a randomized 
sorting algorithm based on the 
divide-and-conquer paradigm:

� Divide: pick a random 
element x (called pivot) and 
partition S into 

� L elements less than x

� E elements equal x

� G elements greater than x

� Recur: sort L and G

� Conquer: join L, E and G

x

x

L GE

x
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Partition
We partition an input 
sequence as follows:

� We remove, in turn, each 
element y from S and 

� We insert y into L, E or G,
depending on the result of 
the comparison with the 
pivot x

Each insertion and removal is 
at the beginning or at the end 
of a sequence, and hence 
takes O(1) time

Thus, the partition step of 
quick-sort takes O(n) time

Algorithm partition(S, p)

Input sequence S, position p of pivot 

Output subsequences L, E, G of the 
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G ← empty sequences

x ← S.remove(p)

while ¬S.isEmpty()

y ← S.remove(S.first())

if y < x

L.insertLast(y)

else if y = x

E.insertLast(y)

else { y > x }

G.insertLast(y)

return L, E, G
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Quick-Sort Tree
An execution of quick-sort is depicted by a binary tree

� Each node represents a recursive call of quick-sort and stores

� Unsorted sequence before the execution and its pivot

� Sorted sequence at the end of the execution

� The root is the initial call 

� The leaves are calls on subsequences of size 0 or 1

7  4  9  6 2  →→→→ 2  4  6 7  9

4 2  →→→→ 2  4 7 9  →→→→ 7 9

2 →→→→ 2 9 →→→→ 9
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Execution Example

Pivot selection

7  2  9  4  →→→→ 2  4  7  9

2 →→→→ 2

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 89  4  →→→→ 4  9

9 →→→→ 9 4 →→→→ 4
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Execution Example (cont.)

Partition, recursive call, pivot selection

2 4  3  1 →→→→ 2  4  7  9

9  4  →→→→ 4  9

9 →→→→ 9 4 →→→→ 4

7  2  9  4  3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 82 →→→→ 2
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Execution Example (cont.)

Partition, recursive call, base case

2 4  3  1 →→→→→→→→ 2  4  7  

1 →→→→ 1 9  4  →→→→ 4  9

9 →→→→ 9 4 →→→→ 4

7  2  9  4 3  7  6 1 →→→→ →→→→ 1  2  3  4  6  7  8  9

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 8
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Execution Example (cont.)

Recursive call, …, base case, join

3  8  6  1  →→→→ 1  3  8  6

3 →→→→ 3 8 →→→→ 8

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4
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Execution Example (cont.)

Recursive call, pivot selection

7  9  7 1  →→→→ 1  3  8  6

8 →→→→ 8

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9
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Execution Example (cont.)

Partition, …, recursive call, base case

7  9  7 1  →→→→ 1  3  8  6

8 →→→→ 8

7  2  9  4 3  7  6 1 →→→→ 1  2  3  4  6  7  8  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9
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Execution Example (cont.)

Join, join

7 9  7 →→→→ 17 7 9

8 →→→→ 8

7  2  9  4  3  7  6 1  →→→→ 1  2  3  4  6 7  7  9

2 4  3  1 →→→→ 1  2 3  4

1 →→→→ 1 4  3 →→→→ 3 4

9 →→→→ 9 4 →→→→ 4

9 →→→→ 9
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Worst-case Running Time
The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element

One of L and G has size n − 1 and the other has size 0

The running time is proportional to the sum

n + (n − 1) + … + 2 + 1

Thus, the worst-case running time of quick-sort is O(n2)

timedepth

1n − 1

……

n − 11

n0

…
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Expected Running Time
Consider a recursive call of quick-sort on a sequence of size s

� Good call: the sizes of L and G are each less than 3s/4
� Bad call: one of L and G has size greater than 3s/4

A call is good with probability 1/2
� 1/2 of the possible pivots cause good calls:

7  9  7 1  →→→→ 1

7  2  9  4 3  7  6 1 9

2  4  3  1 7 2 9 4 3 7 61

7  2 9  4 3  7  6  1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivotsBad pivots Bad pivots
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Expected Running Time, Part 2
Probabilistic Fact: The expected number of coin tosses required in order to 
get k heads is 2k

For a node of depth i, we expect

� i/2 ancestors are good calls

� The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

Therefore, we have

� For a node of depth 2log4/3n, 
the expected input size is one

� The expected height of the 
quick-sort tree is O(log n)

The amount or work done at the 
nodes of the same depth is O(n)

Thus, the expected running time of 
quick-sort is O(n log n)
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In-Place Quick-Sort
Quick-sort can be implemented to run 
in-place

In the partition step, we use replace 
operations to rearrange the elements 
of the input sequence such that

� the elements less than the pivot 
have rank less than h

� the elements equal to the pivot 
have rank between h and k

� the elements greater than the 
pivot have rank greater than k

The recursive calls consider

� elements with rank less than h

� elements with rank greater than k

Algorithm inPlaceQuickSort(S, l, r)

Input sequence S, ranks l and r

Output sequence S with the
elements of rank between l and r
rearranged in increasing order

if l ≥ r

return

i ← a random integer between l and r

x ← S.elemAtRank(i)

(h, k) ← inPlacePartition(x)

inPlaceQuickSort(S, l, h − 1)

inPlaceQuickSort(S, k + 1, r)
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In-Place Partitioning
Perform the partition using two indices to split S into L and EΥG (a 
similar method can split EΥG into E and G).

Repeat until j and k cross:

� Scan j to the right until finding an element > x.

� Scan k to the left until finding an element < x.

� Swap elements at indices j and k

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9

j k

(pivot = 6)

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6 9

j k
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Summary of Sorting Algorithms

in-place, randomized

fastest (good for large inputs)

O(n log n)

expected
quick-sort

sequential data access

fast  (good for huge inputs)
O(n log n)merge-sort

in-place

fast (good for large inputs)
O(n log n)heap-sort

O(n2)

O(n2)

Time

insertion-sort

bubble-sort

Algorithm Notes

in-place

slow (good for small inputs)

in-place

slow (good for small inputs)


