Sorting

Data structures and Algorithms

Acknowledgement:

These slides are adapted from slides provided with *Data Structures and Algorithms in C++* Goodrich, Tamassia and Mount (Wiley, 2004)

Outline

- Bubble Sort
- Insertion Sort
- Merge Sort
- Quick Sort

Bubble Sort

Algorithm

- 1. Compare each pair of adjacent elements from the beginning of an array and, if they are in reversed order, swap them.
- 2. If at least one swap has been done, repeat step 1.

Reference: http://www.algolist.net/Algorithms/Sorting/Bubble_sort

Bubble Sort pseudocode

```
Algorithm bubbleSort(S, C)
  Input sequence S with n elements, comparator C
  Output sequence S sorted according to C
  do
     swapped \leftarrow false
     for each i in 1 to length(S) - 1 inclusive do:
       if S[i-1] > S[i] according to C then
          swap(S[i-1], S[i])
          swapped \leftarrow true
   while
          swapped
```


Bubble Sort performance

- ♦ Worst-case & average-case: O(n²)
- Best-case: (over an already-sorted list):O(n)

Insertion Sort

Reference: http://www.algolist.net/Algorithms/Sorting/Insertion_sort
Sorting

8

Insertion Sort pseudocode

```
Algorithm insertionSort(S, C)

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

for i from 1 to length(S) do

j \leftarrow i

while j > 0 && S[j-1] > S[j] then

swap(S[j-1], S[j])

j--
```

Insertion Sort performance

- Worst-case & average-case: O(n²)
- Best-case: (over an already-sorted list):O(n)
- adaptive (performance adapts to the initial order of elements);
- stable (insertion sort retains relative order of the same elements);
- in-place (requires constant amount of additional space);
- online (new elements can be added during the sort).

Divide-and-Conquer

Divide-and conquer is a general algorithm design paradigm:

Divide: divide the input data S in two or more disjoint subsets S₁, S₂, ...

- Recur: solve the subproblems recursively
- Conquer: combine the solutions for S_1 , S_2 , ..., into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations

Merge Sort

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S₁ and S₂
 into a unique sorted
 sequence

```
Algorithm mergeSort(S, C)
Input sequence S with n
elements, comparator C
Output sequence S sorted
according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(A, B)
   Input sequences A and B with
        n/2 elements each
   Output sorted sequence of A \cup B
   S \leftarrow empty sequence
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() < B.first().element()
           S.insertLast(A.remove(A.first()))
       else
           S.insertLast(B.remove(B.first()))
   while \neg A.isEmptv()
       S.insertLast(A.remove(A.first()))
    while \neg B.isEmpty()
       S.insertLast(B.remove(B.first()))
   return S
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Execution Example

Partition

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Merge

Recursive call, ..., base case, merge

Merge

Recursive call, ..., merge, merge

Merge

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- lacktriangle The overall amount or work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- \bullet Thus, the total running time of merge-sort is $O(n \log n)$

Analysis of Merge-Sort using Recurrence Relations

- Merge(S1,S2) takes time
 O(n), where n is the size of
 S1 and S2
- T(n) = 2T(n/2) + O(n)
- Solving, get T(n)=O(nlogn)

```
Algorithm mergeSort(S, C)
Input sequence S with n
elements, comparator C
Output sequence S sorted
according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

Quick-Sort

Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - *E* elements equal *x*
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join *L*, *E* and *G*

Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- lacktriangle Thus, the partition step of quick-sort takes O(n) time

```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G of the
        elements of S less than, equal to,
        or greater than the pivot, resp.
    L, E, G \leftarrow empty sequences
    x \leftarrow S.remove(p)
    while \neg S.isEmpty()
       y \leftarrow S.remove(S.first())
        if y < x
            L.insertLast(y)
        else if y = x
            E.insertLast(y)
        else \{ y > x \}
            G.insertLast(y)
    return L, E, G
```

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example

Pivot selection

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

Recursive call, pivot selection

Partition, ..., recursive call, base case

Join, join

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- \bullet One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n-1) + ... + 2 + 1$$

 \bullet Thus, the worst-case running time of quick-sort is $O(n^2)$

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 - Good call: the sizes of L and G are each less than 3s/4
 - **Bad call:** one of L and G has size greater than 3s/4

- ◆ A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- \bullet For a node of depth i, we expect
 - i/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 - the elements less than the pivot have rank less than h
 - the elements equal to the pivot have rank between h and k
 - the elements greater than the pivot have rank greater than k
- The recursive calls consider
 - elements with rank less than h
 - elements with rank greater than k

Algorithm *inPlaceQuickSort*(S, l, r)

Input sequence S, ranks l and rOutput sequence S with the elements of rank between l and r rearranged in increasing order

if $l \ge r$

return

 $i \leftarrow$ a random integer between l and r $x \leftarrow S.elemAtRank(i)$ $(h, k) \leftarrow inPlacePartition(x)$ inPlaceQuickSort(S, l, h - 1)inPlaceQuickSort(S, k + 1, r)

In-Place Partitioning

Perform the partition using two indices to split S into L and EYG (a similar method can split EYG into E and G).

```
j k
3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9 (pivot = 6)
```

- Repeat until j and k cross:
 - Scan j to the right until finding an element $\geq x$.
 - Scan k to the left until finding an element < x.
 - Swap elements at indices j and k

Summary of Sorting Algorithms

Algorithm	Time	Notes
bubble-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	$O(n \log n)$ expected	in-place, randomizedfastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)