Sorting

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++
Goodrich, Tamassia and Mount (Wiley, 2004)

Outline

Bubble Sort

Insertion Sort
Merge Sort

Quick Sort

Sorting

Bubble Sort

Algorithm

1. Compare each pair of adjacent elements from
the beginning of an array and, if they are in
reversed order, swap them.

2. If at least one swap has been done, repeat
step 1.

Reference: http://www.algolist.net/Algorithms/Sorting/Bubble _sort
Sorting 3

1st pass

2nd pass

3rd pass

4th pass

5(111(12]1]-5]||16
5111
5|12
12| |-5
12| |16
1115
5|1-5
5|12
111(-5
1115
-5 |1
S 1]19||12] 16

unsorted

5>1, swap
5<12, ok
12 > -5, swap
12 < 16, ok

1<5, ok
5> -5 swap

5<12, ok

1> -5, swap

1<35, ok

-5 <1, ok

sorted

Bubble Sort pseudocode

Algorithm bubbleSort(S, C)
Input sequence S with n elements, comparator C
Output sequence S sorted according to C
do
swapped < false

for eachiin 1 to length(S) — 1 inclusive do:
if S[i - 1] > S[i] according to C then
swap(S[i - 1], S[i])
swapped < true
while swapped

Sorting

5111[12]|-5] |16 unsorted

5111 5>1, swap
_ 512 9 <12, ok
For passin1 ... n-1: 15 5 12> 5. swap
forj In 1..n-pass 12| [16 12 < 16, ok
if SD-1]>$D]: | o e
swap(s[j-1], s[j]) e 5o 5 swan
51112 h <12, ok
Foriinl...n-1:
for jin 1..n-i : 15 : 15 "
. . . <9 0
if S[j-11>S5[]]:
swap(s[j-1], sfjl) =/ o
S 1115 |12 116 sorted

Sorting 6

Bubble Sort performance

Worst-case & average-case: O(n?2)
Best-case: (over an already-sorted list) :0(n)

Sorting

Insertion Sort

Sortec partitial result Lnsortec cata
| |
| |
SX 1 ZX | X
Sortec partitial result L'nsortec cata
]]
SX P X1 >X

Reference: http://www.algolist.net/Algorithms/Sorting/Insertion_sort
Sorting

1st pass

2nd pass

3rd pass

4th pass

71[-5 16| [4
71[-5 16| [4
217 16| [4
5|[7 16| [4
5|[7 16| [4
5] [? 16| [4
5|[2 16|] 4
5][2 16| [4
5|[2 16| [4
5][2 16| [4
5| [2 2116
5|[2 7116
5|2 7|16
5][2 71 [16

unsorted

-5 to be inserted
7 > =5, shift

reached left boundary, insert -5

2 to be inserted
7 > 2, shift
-5 <2, insert 2

16 to be inserted
7 <16, insert 16

4 to be inserted
16 > 4, shift

7 > 4, shift
2<4 insert 4

sorted

Insertion Sort pseudocode

Algorithm insertionSort(S, C)
Input sequence S with n elements, comparator C
Output sequence S sorted according to C

for i from 1 to length(S) do
J—1i
whilej > 0 && S[j - 1] > S|j] then
swap(S[j - 11, S[j1)
j--

Sorting

10

Insertion Sort performance

Worst-case & average-case: O(n2)
Best-case: (over an already-sorted list) :0O(n)

adaptive (performance adapts to the initial order of
elements);

stable (insertion sort retains relative order of the same
elements);

in-place (requires constant amount of additional
space);
online (new elements can be added during the sort).

Sorting 11

Divide-and-Conquer

Divide-and conquer is a general algorithm design
paradigm:
= Divide: divide the input data S

in two or more
disjoint subsets S, S,, ...

s Recur: solve the

subproblems recursively

s Conquer: combine the solutions for §,, S,, ..., into a
solution for S

The base case for the recursion are subproblems of
constant size

Analysis can be done using recurrence equations

Sorting 12

Merge Sort

[72|94—>2479]

./\.
[7|2—>27] [9|4—>49]
/\

=9 [424]

Merge-Sort

Merge-sort on an input
sequence S with n elements
consists of three steps:

= Divide: partition S into two
sequences S, and S, of
about n/2 elements each

= Recur: recursively sort S,
and S,

= Conquer: merge S, and S,
into a unique sorted
sequence

Sorting

Algorithm mergeSort(S, C)

Input sequence S with n
elements, comparator C

Output sequence S sorted
according to C

if S.size() > 1
(S, S,) &< partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S,, S,)

14

Merging Two Sorted Sequences

4 The conquer step of
merge-sort consists of
merging two sorted
sequences A and B into
a sorted sequence S
containing the union of
the elements of A and B

Merging two sorted
sequences, each with
n/2 elements and
implemented by means
of a doubly linked list,
takes O(n) time

Algorithm merge(A, B)
Input sequences A and B with
n/2 elements each

Output sorted sequence of A U B

S < empty sequence
while —A.isEmpty() A —B.isEmpty()
if A.first().element() < B.first().element()
S.insertLast(A.remove(A.first()))
else
S.insertLast(B.remove(B.first()))

while —A.isEmpty()
S.insertLast(A.remove(A.first()))

while —B.isEmpty()
S.insertLast(B.remove(B.first()))

return S

Sorting 15

Merge-Sort Tree

An execution of merge-sort is depicted by a binary tree

= each node represents a recursive call of merge-sort and stores
» unsorted sequence before the execution and its partition
» sorted sequence at the end of the execution

= the root is the initial call
= the leaves are calls on subsequences of size 0 or 1

[72|94—>2479}

712527 (9145 49]

[7—)7} 2 =2 [9—)9] 4 >4

Sorting 16

Execution Example

Partition

[729413861]

Execution Example (cont.)

@ Recursive call, partition

(729413861]

Execution Example (cont.)

@ Recursive call, partition

(729413861]

Execution Example (cont.)

Recursive call, base case

(72943861]

Execution Example (cont.)

Recursive call, base case

(72943861]

Execution Example (cont.)

@ Merge

(72943861]

(72194]

—

71252 7]

//\\ A

7—>7 2—)2

Execution Example (cont.)

Recursive call, ..., base case, merge

(729413861]

(72194]

/\

U|2+27 o4 > 4 9]

N\ //\\ AN

[7_>7] [2—>2] 9—>9 4_>4 """""""""

Sorting 23

Execution Example (cont.)

@ Merge

(72943861]

7219452479

AN

712527 [94-5409]

Execution Example (cont.)

Recursive call, ..., merge, merge

(729413861]
/\.
(7219452479 [3861 136 8]
N AN
712527 [94-5409] 38538 (6116

Execution Example (cont.)

@ Merge

729413861 5123467809]

= =

(7219452479 (3861136 8]
e

Analysis of Merge-Sort

The height h of the merge-sort tree is O(log n)
= at each recursive call we divide in half the sequence,

The overall amount or work done at the nodes of depth i is O(n)
= Wwe partition and merge 2 sequences of size n/2!
= we make 2i+! recursive calls

Thus, the total running time of merge-sort is O(n log n)

depth #seqs size

0 1 n |]
1 2 nl2 [] [J
i 20 n2t |]]]]

27

Analysis of Merge-Sort using
Recurrence Relations

e Merge(S1,S2) takes time Algorithm mergeSort(S, C)
O(n), where n is the size of Input sequence S with n
S1 and S2 elements, comparator C

« T(n) = 2T(n/2) + O(n) Output sequence S sorted

according to C

if S.size() > 1
(S, S,) < partition(S, n/2)
mergeSort(S,, C)
mergeSort(S,, C)
S < merge(S,, S,)

e Solving, get T(n)=0(nlogn)

Sorting 28

Quick-Sort

| 74962524679 |

(42524 | (79579 |

Quick-Sort

Quick-sort is a randomized
sorting algorithm based on the
divide-and-conquer paradigm:

= Divide: pick a random
element x (called pivot) and
partition S into

+ L elements less than x
» E elements equal x
* G elements greater than x

s Recur: sort L and G
= Conquer: joinL, E and G

Sorting

~ <

Q<

30

Partition

We partition an input
sequence as follows:

= We remove, in turn, each
element y from S and

= Weinsertyinto L, E or G,
depending on the result of
the comparison with the
pivot x

Each insertion and removal is
at the beginning or at the end
of a sequence, and hence
takes O(1) time

@ Thus, the partition step of
quick-sort takes O(n) time

M
Algorithm partition(S, p)

Input sequence S, position p of pivot

Output subsequences L, E, G of the
elements of S less than, equal to,
or greater than the pivot, resp.

L, E, G < empty sequences
X < S.remove(p)
while —S.isEmpty()
y < S.remove(S.first())
ify<x
L.insertLast(y)
elseif y =x
E.insertLast(y)
else { y>x}
G.insertLast(y)
return ., E, G

Sorting 31

Quick-Sort Tree

4 An execution of quick-sort is depicted by a binary tree

= Each node represents a recursive call of quick-sort and stores
» Unsorted sequence before the execution and its pivot
» Sorted sequence at the end of the execution

= The root is the initial call
= The leaves are calls on subsequences of size 0 or 1

(74962 524679]

Sorting 32

Execution Example

Pivot selection

| 72943761

33

Execution Example (cont.)

4 Partition, recursive call, pivot selection

(72943761]

34

Execution Example (cont.)

Partition, recursive call, base case

(72943761]

35

Execution Example (cont.)

Recursive call, ..., base case, join

(72943761]

24315123 4]

~ ~
43534 L 0L
< s

Sorting 36

Execution Example (cont.)

Recursive call, pivot selection

(72943761]
e —
(24315123 4] [7 07
o) [43s34) [
/N
EENEY

37

Execution Example (cont.)

#: Partition, ..., recursive call, base case

(72943761]
/\
(24315123 4] (797]

(43 > 3 4]] 99
=

Sorting 38

1-51

Execution Example (cont.)

#:Join, join

| 72943761 5123467709 |

= =

(24315123 4] | 797 > 779 |

(43 > 3 4]] 959
=

Sorting 39

1-51

Worst-case Running Time

The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element

4 One of L and G has size n — 1 and the other has size 0

4 The running time is proportional to the sum
n+n—1)+...+2+1

Thus, the worst-case running time of quick-sort is O(n?)

depth time
0 n l]
1 n-1) []

Sorting 40

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s
» Good call: the sizes of L and G are each less than 3s/4
= Bad call: one of L and G has size greater than 3s/4

72943761] | 72943761]
2431 797 L1] (7294376 |
Good call Bad call

A call is good with probability 1/2
m 1/2 of the possible pivots cause good calls:

[1234567891011121314 1516 |
H_l\ ~ JH_J

Bad pivots Good pivots Bad pivots

Sorting 41

Expected Running Time, Part 2

Probabilistic Fact: The expected number of coin tosses required in order to
get k heads is 2k

For a node of depth i, we expect
= /2 ancestors are good calls
= The size of the input sequence for the current call is at most (3/4)"?n

& ThEI’EfOI’E, we have expected height time per level

= For a node of depth 2log, .n,] s j ------------- O(n)
the expected input size is one

= The expected height of the
quick-sort tree is O(log n)

The amount or work done at the Otlog n)

nodes of the same depth is O(n)

Thus, the expected running time of
quick-sort is O(n log n)

total expected time: O(n log n)

Sorting 42

In-Place Quick-Sort

@ Quick-sort can be implemented to run

in-place
In the partition step, we use replace Algorithm inPlaceQuickSort(S, I, r)
operations to rearrange the elements Input sequence S, ranks / and r
of the input sequence such that Output sequence S with the
= the elements less than the pivot elements of rank between I and r
have rank less than h rearranged in increasing order
= the elements equal to the pivot ifl>r

have rank between h and k

= the elements greater than the
pivot have rank greater than k

The recursive calls consider
m elements with rank less than &
= elements with rank greater than k

return
i « arandom integer between [and r
x < S.elemAtRank(i)
(h, k) < inPlacePartition(x)
inPlaceQuickSort(S, [, h — 1)
inPlaceQuickSort(S, k + 1, r)

Sorting 43

In-Place Partitioning

@ Perform the partition using two indices to split S into L and EYG (a
similar method can split EYG into E and G).

] K
(32510735927989769] (pivot = 6)

Repeat until j and k cross:
= Scan j to the right until finding an element > x.
= Scan k to the left until finding an element < x.
= Swap elements at indices j and k

|£|:

(32510[7[3592[79897609 |
| M— | M—

"

Sorting 44

Summary of Sorting Algorithms

Algorithm Time Notes

bubble-sort O(n’) z :I]c;l\jxia((;eood for small inputs)

Insertion-sort On?) z LT;SJa(Cgeood for small inputs)
quick-sort Oeg(’;i(;i’;) Z :“I;:t)lea;ce(,g:)a:j ?(I:rl iIzaercée inputs)
heap-sort O(n log n) Z :‘I;::I?;sod for large inputs)
merge-sort On log n) # sequential data access

fast (good for huge inputs)

Sorting 45

