
Search Trees

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++

Goodrich, Tamassia and Mount (Wiley, 2004)

Trees 2

Outline

Binary Search Trees

AVL Trees

(2,4) Trees

Red-Black Trees

Trees 3

Binary Search Trees

6

92

41 8

<

>

=

Trees 4

Ordered Dictionaries

Keys are assumed to come from a total order.

New operations:

� first(): first entry in the dictionary ordering

� last(): last entry in the dictionary ordering

� successors(k): iterator of entries with keys
greater than or equal to k; increasing order

� predecessors(k): iterator of entries with keys
less than or equal to k; decreasing order

Trees 5

Binary Search

Binary search can perform operation find(k) on a dictionary implemented
by means of an array-based sequence, sorted by key

� similar to the high-low game

� at each step, the number of candidate items is halved

� terminates after O(log n) steps

Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

Trees 6

Binary Search Trees
A binary search tree is a binary
tree storing keys (or key-value
entries) at its internal nodes
and satisfying the following
property:

� Let u, v, and w be three
nodes such that u is in the
left subtree of v and w is in
the right subtree of v. We
have
key(u) ≤ key(v) ≤ key(w)

External nodes do not store
items

An inorder traversal of a
binary search trees visits the
keys in increasing order

6

92

41 8

Trees 7

Search

To search for a key k, we

trace a downward path
starting at the root

The next node visited
depends on the outcome of
the comparison of k with
the key of the current node

If we reach a leaf, the key is
not found and we return
null

Example: find(4):

� Call TreeSearch(4,root)

Algorithm TreeSearch(k, v)

if T.isExternal (v)

return null

if k < key(v)

return TreeSearch(k, T.left(v))

else if k = key(v)

return v

else { k > key(v) }

return TreeSearch(k, T.right(v))

6

92

41 8

<

>

=

Trees 8

Insertion

To perform operation insert(k, o),
we search for key k
(using TreeSearch)

Assume k is not already in the
tree, and let let w be the leaf
reached by the search

We insert k at node w and
expand w into an internal node

Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

Trees 9

Deletion (cont.)

We consider the case where the
key k to be removed is stored at
a node v whose children are both
internal

� we find the internal node w

that follows v in an inorder
traversal

� we copy key(w) into node v

� we remove node w and its
left child z (which must be a
leaf) by means of operation
removeExternal(z)

Example: remove 3

3

1

8

6 9

5

v

w

z

2

5

1

8

6 9

v

2

Trees 10

Performance

Consider a dictionary with n
items implemented by
means of a binary search
tree of height h

� the space used is O(n)

� methods find, insert and
remove take O(h) time

The height h is O(n) in the
worst case and O(log n) in
the best case

Trees 11

AVL Trees

6

3 8

4

v

z

Trees 12
12

AVL Tree Definition

AVL trees are
balanced.

An AVL Tree is a binary
search tree such that
for every internal node v
of T, the heights of the
children of v can differ by
at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the

heights are shown next to the nodes:

Trees 13

13

Insertion in an AVL Tree
Insertion is as in a binary search tree
Always done by expanding an external node.
Example:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion

Trees 14

4 cases of
unbalanced
trees

Diagram adapted from Wikipedia's original

Trees 15

Trees 16
16

Removal in an AVL Tree
Removal begins as in a binary search tree, which means the node
removed will become an empty external node. Its parent, w, may
cause an imbalance.

Example:

44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

Trees 17
17

Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling up the
tree from w. Also, let y be the child of z with the larger height, and let
x be the child of y with the larger height.

We perform restructure(x) to restore balance at z.

As this restructuring may upset the balance of another node higher in
the tree, we must continue checking for balance until the root of T is
reached

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

Trees 18

18

Running Times for
AVL Trees

a single restructure is O(1)

� using a linked-structure binary tree

find is O(log n)

� height of tree is O(log n), no restructures needed

insert is O(log n)

� initial find is O(log n)

� Restructuring up the tree, maintaining heights is O(log n)

remove is O(log n)

� initial find is O(log n)

� Restructuring up the tree, maintaining heights is O(log n)

Trees 19

(2,4) Trees

11 24

2 6 8 15

30

27 32

Trees 20

Multi-Way Search Tree
A multi-way search tree is an ordered tree such that

� Each internal node has at least two children and stores d −1
key-element items (ki, oi), where d is the number of children

� For a node with children v1 v2 … vd storing keys k1 k2 … kd−1

� keys in the subtree of v1 are less than k1

� keys in the subtree of vi are between ki−1 and ki (i = 2, …, d − 1)

� keys in the subtree of vd are greater than kd−1

� The leaves store no items and serve as placeholders

11 24

2 6 8 15

30

27 32

