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Ordered Dictionaries

# Keys are assumed to come from a total order.
# New operations:
m first(): first entry in the dictionary ordering
m [ast(): last entry in the dictionary ordering

m successors(k): iterator of entries with keys
greater than or equal to k; increasing order

m predecessors(k): iterator of entries with keys
less than or equal to k; decreasing order
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Binary Search

# Binary search can perform operation find(k) on a dictionary implemented
by means of an array-based sequence, sorted by key

= Similar to the high-low game
= at each step, the number of candidate items is halved

» terminates after O(log n) steps
#® Example: find(7)
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Binary Search Trees -

4 A binary search tree is a binary
tree storing keys (or key-value
entries) at its internal nodes
and satisfying the following
property:

s Letu, v, and w be three
nodes such that u is in the
left subtree of v and w is in
the right subtree of v. We

# An inorder traversal of a
binary search trees visits the
keys in increasing order

have

key(u) < key(v) < key(w)

# External nodes do not store
items
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Search

# To search for a key k, we
trace a downward path
starting at the root

# The next node visited
depends on the outcome of
the comparison of k with
the key of the current node

# If we reach a leaf, the key is
not found and we return
null
# Example: find(4):
m Call TreeSearch(4,root)

Algorithm TreeSearch(k, v)
if T.isExternal (v)
return null
if k <key(v)
return TreeSearch(k, T.left(v))
else if k = key(v)
return v
else { k > key(v) }
return TreeSearch(k, T.right(v))
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Insertion

To perform operation insert(k, o),
we search for key k

(using TreeSearch)

Assume Kk is not already in the
tree, and let let w be the leaf
reached by the search

We insert k at node w and
expand w into an internal node

Example: insert 5
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Deletion (cont.)

# We consider the case where the
key k to be removed is stored at
a hode v whose children are both
internal

s we find the internal node w

that follows v in an inorder

traversal
= We copy key(w) into node v

= Wwe remove node w and its
left child z (which must be a p
leaf) by means of operation
removeExternal(z)

# Example: remove 3
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Performance

# Consider a dictionary with n
items implemented by
means of a binary search
tree of height h

= the space used is O(n)

= methods find, insert and
remove take O(h) time

@ The height & is O(n) in the
worst case and O(log n) in
the best case
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AVL Trees
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AVL Tree Definition

# AVL trees are
balanced.

#® An AVL Tree is a binary
search tree such that
for every internal node v
of T, the heights of the
children of v can differ by
at most 1.

An example of an AVL tree where the
heights are shown next to the nodes:
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Insertion in an AVL Tree

# Insertion is as in a binary search tree
#® Always done by expanding an external node.
& Example:

before insertion after insertion

Trees 13



Left Right Case Left Left Case

o 4 cases of

unbalanced

N trees
A

Right Left Case

Trees 14
Diagram adapted from Wikipedia's original



Left Right Case

_

Left Left Case

(fv

1

A

Balanced

Right Left Case

A
s

A

W

Right Right Case

Trees




Removal in an AVL Tree

# Removal begins as in a binary search tree, which means the node
removed will become an empty external node. Its parent, w, may
cause an imbalance.

@ Example:

before deletion of 32
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Rebalancing after a Removal

# Let zbe the first unbalanced node encountered while travelling up the
tree from w. Also, let y be the child of z with the larger height, and let

X be the child of y with the larger height.
# We perform restructure(x) to restore balance at z.

# As this restructuring may upset the balance of another node higher in
the tree, we must continue checking for balance until the root of T is

reached




Running Times for
AVL Trees

# a single restructure is O(1)

= Using a linked-structure binary tree
# find is O(log n)

= height of tree is O(log n), no restructures needed
# insert is O(log n)

= initial find is O(log n)

m Restructuring up the tree, maintaining heights is O(log n)
4 remove is O(log n)

= initial find is O(log n)

m Restructuring up the tree, maintaining heights is O(log n)
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(2,4) Trees
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Multi-Way Search Tree

4 A multi-way search tree is an ordered tree such that

= Each internal node has at least two children and stores d -1
key-element items (k;, 0,), where d is the number of children
= For a node with children v, v, ... v, storing keys k k, ... k; ,
+ keys in the subtree of v, are less than k,
+ keys in the subtree of v, are between k, ;and k; (i=2, ...,d - 1)
+ keys in the subtree of v, are greater than k|

= The leaves store no items and serve as placeholders
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