Search Trees

Data structures and Algorithms

Acknowledgement:

These slides are adapted from slides provided with *Data Structures and Algorithms in C++* Goodrich, Tamassia and Mount (Wiley, 2004)

Outline

- Binary Search Trees
- AVL Trees
- **♦** (2,4) Trees
- Red-Black Trees

Binary Search Trees

Ordered Dictionaries

- Keys are assumed to come from a total order.
- New operations:
 - first(): first entry in the dictionary ordering
 - last(): last entry in the dictionary ordering
 - successors(k): iterator of entries with keys greater than or equal to k; increasing order
 - predecessors(k): iterator of entries with keys less than or equal to k; decreasing order

Binary Search

- Binary search can perform operation find(k) on a dictionary implemented by means of an array-based sequence, sorted by key
 - similar to the high-low game
 - at each step, the number of candidate items is halved
 - terminates after O(log n) steps
- Example: find(7)

Binary Search Trees

- A binary search tree is a binary tree storing keys (or key-value entries) at its internal nodes and satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have

$$key(u) \le key(v) \le key(w)$$

 External nodes do not store items An inorder traversal of a binary search trees visits the keys in increasing order

Search

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the outcome of the comparison of k with the key of the current node
- If we reach a leaf, the key is not found and we return null
- Example: find(4):
 - Call TreeSearch(4,root)

```
Algorithm TreeSearch(k, v)

if T.isExternal(v)

return null

if k < key(v)

return TreeSearch(k, T.left(v))

else if k = key(v)

return v

else { k > key(v) }

return TreeSearch(k, T.right(v))
```


Insertion

- To perform operation insert(k, o), we search for key k (using TreeSearch)
- Assume k is not already in the tree, and let let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5

Deletion (cont.)

- We consider the case where the key k to be removed is stored at a node v whose children are both internal
 - we find the internal node w that follows v in an inorder traversal
 - we copy key(w) into node v
 - we remove node w and its left child z (which must be a leaf) by means of operation removeExternal(z)
- Example: remove 3

Performance

- Consider a dictionary with n items implemented by means of a binary search tree of height h
 - the space used is O(n)
 - methods find, insert and remove take O(h) time
- The height h is O(n) in the worst case and $O(\log n)$ in the best case

AVL Trees

AVL Tree Definition

- AVL trees are balanced.
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1.

An example of an AVL tree where the heights are shown next to the nodes:

Insertion in an AVL Tree

- Insertion is as in a binary search tree
- Always done by expanding an external node.

Example:

before insertion

after insertion

Left Left Case Left Right Case Right Right Case Right Left Case Trees

4 cases of unbalanced trees

Removal in an AVL Tree

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

16 16

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform restructure(x) to restore balance at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

Running Times for AVL Trees

- ♦ a single restructure is O(1)
 - using a linked-structure binary tree
- find is O(log n)
 - height of tree is O(log n), no restructures needed
- insert is O(log n)
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)
- remove is O(log n)
 - initial find is O(log n)
 - Restructuring up the tree, maintaining heights is O(log n)

(2,4) Trees

Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores d-1key-element items (k_i, o_i) , where d is the number of children
 - For a node with children $v_1 v_2 \dots v_d$ storing keys $k_1 k_2 \dots k_{d-1}$
 - keys in the subtree of v_1 are less than k_1
 - keys in the subtree of v_i are between k_{i-1} and k_i (i = 2, ..., d-1)
 - keys in the subtree of v_d are greater than k_{d-1}
 - The leaves store no items and serve as placeholders

