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Binary Search Trees
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Ordered Dictionaries

Keys are assumed to come from a total order.

New operations: 

� first(): first entry in the dictionary ordering

� last(): last entry in the dictionary ordering

� successors(k): iterator of entries with keys 
greater than or equal to k; increasing order

� predecessors(k): iterator of entries with keys 
less than or equal to k; decreasing order
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Binary Search

Binary search can perform operation find(k) on a dictionary implemented 
by means of an array-based sequence, sorted by key

� similar to the high-low game

� at each step, the number of candidate items is halved

� terminates after O(log n) steps

Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19
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Binary Search Trees
A binary search tree is a binary 
tree storing keys (or key-value 
entries) at its internal nodes 
and satisfying the following 
property:

� Let u, v, and w be three 
nodes such that u is in the 
left subtree of v and w is in 
the right subtree of v. We 
have 
key(u) ≤ key(v) ≤ key(w)

External nodes do not store 
items

An inorder traversal of a 
binary search trees visits the 
keys in increasing order
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Search

To search for a key k, we 

trace a downward path 
starting at the root

The next node visited 
depends on the outcome of 
the comparison of k with 
the key of the current node

If we reach a leaf, the key is 
not found and we return 
null

Example: find(4):

� Call TreeSearch(4,root)

Algorithm TreeSearch(k, v)

if T.isExternal (v)

return null

if k < key(v)

return TreeSearch(k, T.left(v))

else if k = key(v)

return v

else { k > key(v) }

return TreeSearch(k, T.right(v))
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Insertion

To perform operation insert(k, o), 
we search for key k 
(using TreeSearch)

Assume k is not already in the 
tree, and let let w be the leaf 
reached by the search

We insert k at node w and 
expand w into an internal node

Example: insert 5
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Deletion (cont.)

We consider the case where the 
key k to be removed is stored at 
a node v whose children are both 
internal

� we find the internal node w 

that follows v in an inorder 
traversal

� we copy key(w) into node v

� we remove node w and its 
left child z (which must be a 
leaf) by means of operation 
removeExternal(z)

Example: remove 3
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Performance

Consider a dictionary with n
items implemented by 
means of a binary search 
tree of height h

� the space used is O(n)

� methods find, insert and 
remove take O(h) time

The height h is O(n) in the 
worst case and O(log n) in 
the best case
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AVL Trees
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AVL Tree Definition

AVL trees are 
balanced.

An AVL Tree is a binary 
search tree such that 
for every internal node v 
of T, the heights of the 
children of v can differ by 
at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the 

heights are shown next to the nodes:
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Insertion in an AVL Tree
Insertion is as in a binary search tree
Always done by expanding an external node.
Example:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion



Trees 14

4 cases of 
unbalanced 
trees

Diagram adapted from Wikipedia's original
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Removal in an AVL Tree
Removal begins as in a binary search tree, which means the node 
removed will become an empty external node. Its parent, w, may 
cause an imbalance.

Example: 
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Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling up the 
tree from w. Also, let y be the child of z with the larger height, and let 
x be the child of y with the larger height.

We perform restructure(x) to restore balance at z.

As this restructuring may upset the balance of another node higher in 
the tree, we must continue checking for balance until the root of T is 
reached
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Running Times for 
AVL Trees

a single restructure is O(1)

� using a linked-structure binary tree

find is O(log n)

� height of tree is O(log n), no restructures needed

insert is O(log n)

� initial find is O(log n)

� Restructuring up the tree, maintaining heights is O(log n)

remove is O(log n)

� initial find is O(log n)

� Restructuring up the tree, maintaining heights is O(log n)
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(2,4) Trees
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Multi-Way Search Tree
A multi-way search tree is an ordered tree such that 

� Each internal node has at least two children and stores  d −1 
key-element items (ki, oi), where d is the number of children 

� For a node with children v1 v2 … vd storing  keys k1 k2 … kd−1

� keys in the subtree of v1 are less than k1

� keys in the subtree of vi are between ki−1 and ki (i = 2, …, d − 1)

� keys in the subtree of vd are greater than kd−1

� The leaves store no items and serve as placeholders
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