
Trees

Data structures and Algorithms

Acknowledgement: 
These slides are adapted from slides provided with Data Structures and Algorithms in C++

Goodrich, Tamassia and Mount (Wiley, 2004)

Make Money Fast!

Stock
Fraud

Ponzi
Scheme

Bank
Robbery



Trees 2

Outline and Reading

Tree ADT (§7.1.2)

Preorder and postorder traversals (§7.2)

BinaryTree ADT (§7.3)

Inorder traversal (§7.3.6)



Trees 3

What is a Tree

• In computer science, a tree 
is an abstract model of a 
hierarchical structure

• A tree consists of 
nodes with 
a parent-child relation

• Applications:

� Organization charts

� File systems

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada



Trees 4

Tree Terminology

• Root: node without parent (A)

• Internal node: node with at least 
one child (A, B, C, F)

• Leaf (aka External node): node 
without children (E, I, J, K, G, H, D)

• Ancestors of a node: parent, 
grandparent, great-grandparent, 
etc.

• Depth of a node: number of 
ancestors

• Height of a tree: maximum depth 
of any node (3)

• Descendant of a node: child, 
grandchild, great-grandchild, etc.

subtree

A

B DC

G HE F

I J K

• Subtree: tree consisting of 
a node and its descendants



Trees 5Trees 5

Exercise: Trees

Answer the following questions about the 
tree shown on the right:

What is the size of the tree (number of 
nodes)?

Classify each node of the tree as a 
root, leaf, or internal node

List the ancestors of nodes B, F, G, and 
A. Which are the parents?

List the descendents of nodes B, F, G, 
and A. Which are the children?

List the depths of nodes B, F, G, and A.

What is the height of the tree?

Draw the subtrees that are rooted at 
node F and at node K.

A

B DC

G HE F

I J K



Trees 6

Tree ADT
We use positions to abstract nodes

Generic methods:

• integer size()

• boolean isEmpty()

• objectIterator elements()

• positionIterator positions()

Accessor methods:

• position root()

• position parent(p)

• positionIterator children(p)

Query methods:

• boolean isInternal(p)

• boolean isLeaf (p)

• boolean isRoot(p)

Update methods:

• swapElements(p, q)

• object replaceElement(p, o)

Additional update methods may 
be defined by data structures 
implementing the Tree ADT



Trees 7

Depth and Height

v : a node of a tree T. 

The depth of v is the number of 
ancestors of v, excluding v itself. 

The height of a node v 
in a tree T is defined recursively: 

� If v is an external node, 
then the height of v is 0 

� Otherwise, the height of v is 
one plus the maximum height 
of a child of v. 

Algorithm depth(T, v)

if T.isRoot (v)

return 0

else

return 1 + depth (T, T.parent(v))

Algorithm height(T, v)

if T.isExternal (v)

return 0

else

h ←←←← 0

for each child w of v in T

h ←←←← max (h, height(T, w))

return 1 + h



Trees 8Trees 8

Preorder Traversal

• A traversal visits the nodes of a 
tree in a systematic manner

• In a preorder traversal, a node is 
visited before its descendants 

• Application: print a structured 
document

Algorithm preOrder(v)

visit(v)

for each child w of v

preOrder (w)

Make Money Fast!

1. Motivations References2. Methods

2.1 Stock
Fraud

2.2 Ponzi
Scheme

1.1 Greed 1.2 Avidity
2.3 Bank
Robbery

1

2

3

5

4
6 7 8

9



Trees 9Trees 9

Postorder Traversal

• In a postorder traversal, a node 
is visited after its descendants

• Application: compute space used 
by files in a directory and its 
subdirectories

Algorithm postOrder(v)

for each child w of v

postOrder(w)

visit(v)

dsa2010f/

homeworks/
todo.txt

1K
programs/

sList.cpp
10K

Stack.cpp
25K

hw01.doc
3K

hw02.doc
2K

Queue.cpp
20K

9

3

1

7

2 4 5 6

8



Trees 10

Binary Tree

• A binary tree is a tree with the following 
properties:

• Each internal node has two children

• The children of a node are an ordered 
pair

• We call the children of an internal node 
left child and right child

• Alternative recursive definition: 
a binary tree is either

• a tree consisting of a single node, or

• a tree whose root has an ordered pair 
of children, each of which is a binary 
tree

• Applications:
• arithmetic expressions

• decision processes

• searching

A

B C

F GD E

H I



Trees 11Trees 11

Arithmetic Expression Tree

• Binary tree associated with an arithmetic expression

• internal nodes: operators

• leaves: operands

• Example: arithmetic expression tree for the expression 
(2 × (a − 1) + (3 × b))

+

××

−2

a 1

3 b



Trees 12Trees 12

Decision Tree

• Binary tree associated with a decision process

• internal nodes: questions with yes/no answer

• leaves: decisions

• Example: shooting (robots playing football)

See the ball?

Ball and goal in line? Ball last seen on the left?

Forwards Adjust position Turn left Turn right

Yes No

Yes No Yes No



Trees 13Trees 13

Properties of Binary Trees

• Notation

n number of nodes

l number of leaves

i number of internal 
nodes

h height

• Properties:

• l ==== i ++++ 1

• n ==== 2l −−−− 1

• h ≤≤≤≤ i

• h ≤≤≤≤ (n −−−− 1)////2

• l ≤≤≤≤ 2h

• h ≥≥≥≥ log2 l

• h ≥≥≥≥ log2 (n ++++ 1) −−−− 1



Trees 14

BinaryTree ADT

The BinaryTree ADT extends the Tree ADT, i.e., it 
inherits all the methods of the Tree ADT

Update methods may be defined by data structures 
implementing the BinaryTree ADT

Additional methods:

• position leftChild(p)

• position rightChild(p)

• position sibling(p)



Trees 1515

Inorder Traversal

• In an inorder traversal, 
a node is visited after its left 
subtree and before its right 
subtree

Algorithm inOrder(v)

if isInternal(v)

inOrder(leftChild(v))

visit(v)

if isInternal(v)

inOrder(rightChild(v))

3

1

2

5

6

7 9

8

4



Trees 16

Inorder Traversal – Application

• Application: draw a binary tree. 
Assign x- and y-coordinates to node v, where

• x(v) = inorder rank of v

• y(v) = depth of v



Trees 17

Exercise: Preorder & InOrder Traversal

• Draw a (single) binary tree T, such that

• Each internal node of T stores a single character

• A preorder traversal of T yields EXAMFUN

• An inorder traversal of T yields MAFXUEN



Trees 18Trees

Print Arithmetic Expressions
Specialization of 

an inorder traversal

• print operand or operator 
when visiting node

• print “(“ before traversing left 
subtree

• print “)“ after traversing right 
subtree

Algorithm printExpression(v)

if hasLeft(v)
print (“(’’)

printExpression(leftChild(v))

print(v.element())

if hasRight(v)

printExpression(rightChild(v))

print (“)’’)+

××

−2

a 1

3 b
((2 × (a − 1)) + (3 × b))



Trees 19

Evaluate Arithmetic Expressions
Specialization of a postorder 

traversal

• recursive method returning the 
value of a subtree

• when visiting an internal node, 
combine the values 
of the subtrees

Algorithm evalExpr(v)

if isExternal(v)

return v.element()

else

x ←←←← evalExpr(leftChild(v))

y ←←←← evalExpr(rightChild(v))

◊◊◊◊ ←←←← operator stored at v

return x ◊◊◊◊ y

+

××

−2

5 1

3 2



Trees 20Trees 20

Exercise: Arithmetic Expressions 

• Draw an expression tree that has 

• Four leaves, storing the values 1, 5, 6, and 7

• 3 internal nodes, storing operations +, -, *, / 
(operators can be used more than once, but each 
internal node stores only one)

• The value of the root is 21



Trees 21Trees 21

∅

Data Structure for Trees

• A node is represented by an 
object storing

• Element

• Parent node

• Sequence of children nodes

• Node objects implement the 
Position ADT

B

DA

C E

F

B

∅ ∅

A D F

∅

C

∅

E



Trees 22Trees 22

Data Structure for Binary Trees
• A node is represented by an 

object storing

• Element

• Parent node

• Left child node

• Right child node

• Node objects implement the 
Position ADT

B

DA

C E

∅∅∅∅ ∅∅∅∅

∅∅∅∅ ∅∅∅∅ ∅∅∅∅ ∅∅∅∅

B

A D

C E

∅∅∅∅



Trees 23

C++ Implementation

• Tree interface

• BinaryTree interface 
extending Tree

• Classes implementing Tree
and BinaryTree and providing

• Constructors

• Update methods

• Print methods

• Examples of updates for 
binary trees

• expandExternal(v)

• removeAboveExternal(w)

A

∅∅∅∅ ∅∅∅∅

expandExternal(v)

A

CB

B

removeAboveExternal(w)

A

v v

w


