
Stacks & Queues

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++

Goodrich, Tamassia and Mount (Wiley, 2004)

Stacks & Queues 22

Outline and Reading

• The Stack ADT (§5.1.1)
• Applications of Stacks (§5.1.5)
• Array-based implementation (§5.1.2)
• List-based stack (§5.1.3)
• Applications (§5.1.5)

• The Queue ADT (§5.2.1)
• Implementation with a circular array (§5.2.2)
• List-based queue (§5.2.3)
• Round Robin schedulers (§5.2.4)

Stacks & Queues 3

Stacks

Stacks & Queues 4

The Stack ADT

Stack ADT stores arbitrary objects

Insertions and deletions follow
last-in first-out (LIFO) scheme

Main stack operations:

� push(object): inserts an element

� pop(): removes and returns the last inserted element

Auxiliary stack operations:

� top(): returns the last inserted element without removing it

� size(): returns the number of elements stored

� isEmpty(): returns a Boolean value indicating whether no
elements are stored

Stacks & Queues 5

Stack Example
Operation output stack

• push(8) - (8)

• push(3) - (3, 8)

• pop() 3 (8)

• push(2) - (2, 8)

• push(5) - (5, 2, 8)

• top() 5 (5, 2, 8)

• pop() 5 (2, 8)

• pop() 2 (8)

• pop() 8 ()

• pop() "error" ()

• push(9) - (9)

• push(1) - (1, 9)

Stacks & Queues 6

Stack Interface in C++

• Interface
corresponding to
our Stack ADT

• Requires the
definition of class
EmptyStackException

• Corresponding STL
construct: stack

template <typename Object>

class Stack {

public:

int size() const;

bool isEmpty() const;

Object& top()

throw(EmptyStackException);

void push(const Object& o);

Object pop()

throw(EmptyStackException);

};

Stacks & Queues 7

Exceptions

Attempting the execution of an operation of
ADT may sometimes cause an error condition,
called an exception

Exceptions are said to be “thrown” by an
operation that cannot be executed

In the Stack ADT, operations pop and top
cannot be performed if the stack is empty

Attempting the execution of pop or top on an
empty stack throws an EmptyStackException

Stacks & Queues 8

Applications of Stacks

• Direct applications

� Page-visited history in a Web browser

� Undo sequence in a text editor

� Saving local variables when one function calls
another, and this one calls another, and so on.

• Indirect applications

� Auxiliary data structure for algorithms

� Component of other data structures

Stacks & Queues 9

C++ Run-time Stack

• The C++ run-time system keeps
track of the chain of active
functions with a stack

• When a function is called, the run-
time system pushes on the stack a
frame containing:

• Local variables and return value

• Program counter, keeping track of the
statement being executed

• When a function returns, its frame
is popped from the stack and
control is passed to the method on
top of the stack

main() {

int i;

i = 5;

foo(i);

}

foo(int j)

{

int k;

k = j+1;

bar(k);

}

bar(int m)

{

…

}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

Stacks & Queues 10

Array-based Stack

• A simple way of
implementing the Stack
ADT uses an array

• We add elements from left
to right

• A variable keeps track of
the index of the top
element

S
0 1 2 t

…

Algorithm size()

return t + 1

Algorithm pop()

if isEmpty() then

throw EmptyStackException

else

t ←←←← t - 1

return S[t + 1]

Stacks & Queues 11

Array-based Stack (cont.)

• The array storing the stack
elements may become full

• A push operation will then
throw a FullStackException

� Limitation of the array-based
implementation

� Not intrinsic to the Stack ADT

S
0 1 2 t

…

Algorithm push(o)

if t = S.length - 1 then

throw FullStackException

else

t ←←←← t + 1

S[t] ←←←← o

Stacks & Queues 12

Performance and Limitations
- array-based implementation of stack ADT

• Performance

• Let n be the number of elements in the stack

• The space used is O(n)

• Each operation runs in time O(1)

• Limitations

• The maximum size of the stack must be defined
a priori and cannot be changed

• Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks & Queues 13

Array-based Stack in C++

template <typename Object>

class ArrayStack {

private:

int capacity; // stack capacity

Object *S; // stack array

int t; // top of stack

public:

ArrayStack(int c) {

capacity = c;

S = new Object[capacity];

t = –1;

}

bool isEmpty()

{ return (t < 0); }

Object pop()

throw(EmptyStackException) {

if(isEmpty())

throw EmptyStackException

(“Access to empty stack”);

return S[t--];

}

// … (other functions omitted)

Stacks & Queues 14

Stack with a Singly Linked List

• We can implement a stack with a singly linked list

• The front element is stored at the first node of the list

• The space used is O(n) and each operation of the
Stack ADT takes O(1) time

t ∅∅∅∅

nodes

elements

top
bottom

Stacks & Queues 15

Parentheses Matching

Each “(”, “{”, or “[” must be paired with a
matching “)”, “}”, or “[”

� correct: ()(()){([()])}

� incorrect: ((()(()){([()])}

� incorrect:)(()){([()])}

� incorrect: ({[])}

� incorrect: (

Stacks & Queues 16

Parentheses Matching Algorithm

Algorithm ParenMatch(X,n):

Input: An array X of n tokens,

each of which is either

a grouping symbol,

a variable,

an arithmetic operator, or

a number

Output: true if and only if all

the grouping symbols in X

match

Let S be an empty stack

for i=0 to n-1 do

if X[i] is an opening grouping symbol then

S.push(X[i])

else if X[i] is a closing grouping symbol then

if S.isEmpty() then

return false {nothing to match with}

if S.pop() does not match the type of X[i] then

return false {wrong type}

if S.isEmpty() then

return true {every symbol matched}

else

return false {some symbols were never matched}

Stacks & Queues 17

HTML Tag Matching

<body>

<center>

<h1> The Little Boat </h1>

</center>

<p> The storm tossed the little boat like a
cheap sneaker in an old washing machine. The
three drunken fishermen were used to such
treatment, of course, but not the tree
salesman, who even as a stowaway now felt
that he had overpaid for the voyage. </p>

 Will the salesman die?

 What color is the boat?

 And what about Naomi?

</body>

The Little Boat

The storm tossed the little boat like a

cheap sneaker in an old washing

machine. The three drunken

fishermen were used to such

treatment, of course, but not the tree

salesman, who even as a stowaway

now felt that he had overpaid for the

voyage.

1. Will the salesman die?

2. What color is the boat?

3. And what about Naomi?

For fully-correct HTML, each <name> should pair with a matching
</name>

Stacks & Queues 18

Queues

Stacks & Queues 19

The Queue ADT

The Queue ADT stores arbitrary
objects

Insertions and deletions follow
the first-in first-out (FIFO)
scheme

Insertions are at the rear of the
queue and removals are at the
front of the queue

Stacks & Queues 20

The Queue ADT (cont.)
Main queue operations:

� enqueue(o): inserts element o at the end of the queue

� dequeue(): removes and returns the element at the front of
the queue

Auxiliary queue operations:

� front(): returns the element at the front without removing it

� size(): returns the number of elements stored

� isEmpty(): returns a Boolean value indicating whether no
elements are stored

Exceptions

� Attempting the execution of dequeue or front on an empty
queue throws an EmptyQueueException

Stacks & Queues 21

Queue Example

Operation output queue

• enqueue(5) - (5)

• enqueue(3) - (5, 3)

• dequeue() 5 (3)

• enqueue(7) - (3, 7)

• dequeue() 3 (7)

• front() 7 (7)

• dequeue() 7 ()

• dequeue() "error" ()

• isEmpty() true ()

• enqueue(9) - (9)

• size() 1 (9)

Stacks & Queues 22

Informal C++ Queue Interface

• Informal C++
interface for our
Queue ADT

• Requires the
definition of class
EmptyQueueException

• Corresponding
built-in STL class:
queue

template <typename Object>

class Queue {

public:

int size();

bool isEmpty();

Object& front()

throw(EmptyQueueException);

void enqueue(Object o);

Object dequeue()

throw(EmptyQueueException);

};

Stacks & Queues 23

Applications of Queues

• Direct applications

• Waiting lists

• Access to shared resources (e.g., printer)

• Multiprogramming

• Indirect applications

• Auxiliary data structure for algorithms

• Component of other data structures

Stacks & Queues 24

Array-based Queue
• Use an array of size N in a circular fashion

• Two variables keep track of the front and rear
• f index of the front element

• r index immediately past the rear element

• Array location r is kept empty

Q

0 1 2 rf

normal configuration

Q

0 1 2 fr

wrapped-around configuration

Stacks & Queues 2525

Queue Operations

• We use the modulo operator
(remainder of division)

Algorithm size()

return (N - f + r) mod N

Algorithm isEmpty()

return (f = r)

Q

0 1 2 rf

Q

0 1 2 fr

Stacks & Queues 26

Queue Operations (cont.)
Algorithm enqueue(o)

if size() = N - 1 then

throw FullQueueException

else

Q[r] ←←←← o

r ←←←← (r + 1) mod N

• Operation enqueue
throws an exception
if the array is full

• This exception is
implementation-
dependent

Q

0 1 2 rf

Q

0 1 2 fr

Stacks & Queues 27

Queue Operations (cont.)

• Operation dequeue
throws an exception if
the queue is empty

• This exception is
specified in the queue
ADT

Algorithm dequeue()

if isEmpty() then

throw EmptyQueueException

else

o ←←←← Q[f]

f ←←←← (f + 1) mod N

return o

Q

0 1 2 rf

Q

0 1 2 fr

Stacks & Queues 28

Performance and Limitations
- array-based implementation of queue ADT

• Performance

• Let n be the number of elements in the queue

• The space used is O(n)

• Each operation runs in time O(1)

• Limitations

• The maximum size of the queue must be defined
a priori , and cannot be changed

• Trying to push a new element into a full queue
causes an implementation-specific exception

Stacks & Queues 29

Queue with a Singly Linked List
• We can implement a queue with a singly linked list

• The front element is stored at the first node

• The rear element is stored at the last node

• The space used is O(n) and each operation of the Queue ADT takes
O(1) time

• NOTE: we do not have the size-limitation of the array based
implementation, i.e., the queue is NEVER full.

f

r

∅∅∅∅

nodes

elements

front

rear

Stacks & Queues 30

Application: Round Robin Schedulers

We can implement a round robin scheduler using a queue, Q, by repeatedly
performing the following steps:

1. e = Q.dequeue()

2. Service element e

3. Q.enqueue(e)

The Queue

Shared

Service

1 . Deque the

next element

3 . Enqueue the

serviced element

2 . Service the

next element

