Recursion

Data structures and Algorithms

What is recursion?

A way of thinking about problems.
A method for solving problems.
Related to mathematical induction.

: int f
In programming: lntm(i(‘){.
= a function calls itself }
+ direct recursion
int f
= a function calls its invoker - ...(;(i.

+ indirect recursion }

Recursion

int g () {

. f(O); ...

Outline of a Recursive Function

FIGURE 7.1
A Set of Mested Wooden Figures

if (answer is known)

base case —— provide the answer
else
recursive case ——— make a recursive call

to solve a smaller version
of the same problem

Recursion

Recursive Factorial Method

@ nl=n*(n-1)*(n-2)*...*x3*2*1
@ nl=n*(n-1)!

& 0 =1 \Ca” return 4*6 = 24 ———— final answer
[recursiveFactoriaM)
\ca” return 3*2 = 6
[recursiveFactoria(S) \

e

[recursiveFactoria(Z)

Algorithm recursiveFactorial(n)

if n==0 then
turn 1 \Ca” return 11 = 1
retu
else [recu rsiveFactorial1) I
. i :
return n * recursiveFactorial(n-1) \Ca” return

[recursiveFactoriaKO)

Recursion 4

Fibonacci sequence

1,1,2,3,5,8,13,21,

(

| forn==1
fib(n) = | 1 for n ==
fib(n-2) + fib(n-1) formn >?2

Algorithm fib(n)
if n<=2 then
return 1
else

return fib(n-2) + fib(n-1)

Recursion

Algorithm fib(n)

Tracing fib(6) <=2 then

®
o
JogRelcRoNeoRe
cfie

computation repeats!

Recursion 6

Design a Recursive Algorithm

There must be at least one case (the base case), for a
small value of n, that can be solved directly

A problem of a given size n can be split into one or
more smaller versions of the same problem (recursive
case)

Recognize the base case and provide a solution to it

Devise a strategy to split the problem into smaller
versions of itself while making progress toward the
base case

Combine the solutions of the smaller problems in such
a way as to solve the larger problem

Recursion 7

Euclid's Algorithm

Finds the greatest common divisor of two nonnegative
integers that are not both 0

Recursive definition of gcd algorithm
= gcd (9, b) =a (if bis 0)
= gcd (9, b) = ged (b, a % b) (if b!=0)

Implementation: int gcd (int a, int b)
{
if (b == 9)
return a;
else
return gcd (b, a % b);
}

Recursion 8

[terative vs. recursive gcd

int gcd (int a, int b)

{

int temp;
while (b 1= 0)
{
temp = b;
b=a%b;
a = temp;
)

return a;

int gcd (int a, int b)

{

Recursion

if (b ==0)
return a;
else
return gcd (b, a % b);

Multiple recursion

Tail recursion: a linearly recursive method makes its
recursive call as its last step.
= e.g. recursive gcd
= Can be easily converted to non-recursive methods

Binary recursion: there are two recursive calls for each
non-base case
= e.g. fibonaci sequence

Multiple recursion: makes potentially many recursive
calls (not just one or two).

Recursion 10

Multiple recursion — Example

List all 'abc' strings of length

void 1listAllStrings(int length, char* start)

{

if (length < 1) { //base case: empty string
*start = '\0';

output();
} else { //recursive case: reduce length by 1
for (char c = "a'; c <= 'c'; c++) {

*start = c;
listAllStrings(length-1, start+l);

Recursion

aaa
aab
aac
aba
abb
abc
aca
acb
acc
baa
bab

CCC

11

Why using recursion?

Recursion makes your code faster? No!
= overhead for function call and return
= Values recomputed

Recursion uses less memory? No!

= overhead for a function call and return (stack
memory)

Recursion makes your code simple?
Sometimes.

= readable code that is easy to debug

Recursion

12

