Recursion

Data structures and Algorithms

What is recursion?

- A way of thinking about problems.
- A method for solving problems.
- Related to mathematical induction.
- In programming:
 - a function calls itself
 - direct recursion

```
int f () {
    ... f(); ...
}
```

- a function calls its invoker
 - indirect recursion

Outline of a Recursive Function

base case -----

recursive case -----

if (answer is known)
provide the answer
else

make a recursive call to solve a **smaller** version of the **same** problem

Recursive Factorial Method

```
n! = n * (n-1) * (n-2) * ... * 3 * 2 * 1
n! = n * (n-1)!
0! = 1
```

```
Algorithm recursive Factorial(n)

if n==0 then

return 1

else

return n * recursive Factorial(n-1)
```


Fibonacci sequence

```
1, 1, 2, 3, 5, 8, 13, 21, ....

fib(n) = 

\begin{cases}
1 & \text{for } n == 1 \\
1 & \text{for } n == 2 \\
\text{fib}(n-2) + \text{fib}(n-1) & \text{for } n > 2
\end{cases}
```

```
Algorithm fib(n)
if n \le 2 then
return 1
else
return fib(n-2) + fib(n-1)
```

Tracing fib(6)

```
Algorithm fib(n)
if n \le 2 then
return 1
else
return fib(n-2) + fib(n-1)
```


computation repeats!

Design a Recursive Algorithm

- lacktriangle There must be at least one case (the base case), for a small value of n, that can be solved directly
- A problem of a given size n can be split into one or more smaller versions of the same problem (recursive case)
- Recognize the base case and provide a solution to it
- Devise a strategy to split the problem into smaller versions of itself while making progress toward the base case
- Combine the solutions of the smaller problems in such a way as to solve the larger problem

Euclid's Algorithm

- Finds the greatest common divisor of two nonnegative integers that are not both 0
- Recursive definition of gcd algorithm

```
    gcd (a, b) = a (if b is 0)
    gcd (a, b) = gcd (b, a % b) (if b != 0)
```

Implementation:

```
int gcd (int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd (b, a % b);
}
```

Iterative vs. recursive gcd

```
int gcd (int a, int b)
   int temp;
   while (b != 0)
       temp = b;
       b = a \% b;
       a = temp;
   return a;
```

```
int gcd (int a, int b)
{
    if (b == 0)
        return a;
    else
        return gcd (b, a % b);
}
```

Multiple recursion

- ◆ Tail recursion: a linearly recursive method makes its recursive call as its last step.
 - e.g. recursive gcd
 - Can be easily converted to non-recursive methods
- Binary recursion: there are two recursive calls for each non-base case
 - e.g. fibonaci sequence
- Multiple recursion: makes potentially many recursive calls (not just one or two).

Multiple recursion – Example

List all 'abc' strings of length *l*

```
void listAllStrings(int length, char* start)
{
    if (length < 1) { //base case: empty string
        *start = '\0';
        output();
    } else { //recursive case: reduce length by 1
        for (char c = 'a'; c <= 'c'; c++) {
            *start = c;
            listAllStrings(length-1, start+1);
        }
    }
}</pre>
```

```
aaa
aab
aac
aba
abb
abc
aca
acb
acc
baa
bab
•••
CCC
```

11

Why using recursion?

- Recursion makes your code faster? No!
 - overhead for function call and return
 - values recomputed
- Recursion uses less memory? No!
 - overhead for a function call and return (stack memory)
- Recursion makes your code simple?
 Sometimes.
 - readable code that is easy to debug