
Recursion

Data structures and Algorithms

Recursion 2

What is recursion?

A way of thinking about problems.

A method for solving problems.

Related to mathematical induction.

In programming:

� a function calls itself

� direct recursion

� a function calls its invoker

� indirect recursion

int f () {

... f(); ...

}

int f () {

... g(); ...

}

int g () {

... f(); ...

}

Recursion 3

Outline of a Recursive Function

if (answer is known)

provide the answer

else

make a recursive call

to solve a smaller version

of the same problem

base case

recursive case

Recursion 4

Recursive Factorial Method

n! = n * (n-1) * (n-2) * … * 3 * 2 * 1

n! = n * (n-1)!

0! = 1

Algorithm recursiveFactorial(n)

if n==0 then

return 1

else

return n * recursiveFactorial(n-1)
return 1

recursiveFactorial(1)

call

recursiveFactorial(0)

call

recursiveFactorial(2)

call

recursiveFactorial(3)

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answer

(4recursiveFactorial)

call

Recursion 5

Fibonacci sequence

1 for n == 1

fib(n) = 1 for n == 2

fib(n-2) + fib(n-1) for n > 2

1, 1, 2, 3, 5, 8, 13, 21, ….

Algorithm fib(n)

if n<=2 then

return 1

else

return fib(n-2) + fib(n-1)

Recursion 6

Tracing fib(6)

2 1

3 2

4 3

2 1

5

6

4

2 1

3 2

computation repeats!

Algorithm fib(n)

if n<=2 then

return 1

else

return fib(n-2) + fib(n-1)

Recursion 7

Design a Recursive Algorithm

There must be at least one case (the base case), for a
small value of n, that can be solved directly

A problem of a given size n can be split into one or
more smaller versions of the same problem (recursive
case)

Recognize the base case and provide a solution to it

Devise a strategy to split the problem into smaller
versions of itself while making progress toward the
base case

Combine the solutions of the smaller problems in such
a way as to solve the larger problem

Recursion 8

Euclid's Algorithm

Finds the greatest common divisor of two nonnegative
integers that are not both 0

Recursive definition of gcd algorithm

� gcd (a, b) = a (if b is 0)

� gcd (a, b) = gcd (b, a % b) (if b != 0)

Implementation: int gcd (int a, int b)

{

if (b == 0)

return a;

else

return gcd (b, a % b);

}

Recursion 9

Iterative vs. recursive gcd

int gcd (int a, int b)

{

int temp;

while (b != 0)

{

temp = b;

b = a % b;

a = temp;

}

return a;

}

int gcd (int a, int b)

{

if (b == 0)

return a;

else

return gcd (b, a % b);

}

Recursion 10

Multiple recursion

Tail recursion: a linearly recursive method makes its
recursive call as its last step.
� e.g. recursive gcd

� Can be easily converted to non-recursive methods

Binary recursion: there are two recursive calls for each
non-base case
� e.g. fibonaci sequence

Multiple recursion: makes potentially many recursive
calls (not just one or two).

Recursion 11

Multiple recursion – Example

List all 'abc' strings of length l

void listAllStrings(int length, char* start)

{

if (length < 1) { //base case: empty string

*start = '\0';

output();

} else { //recursive case: reduce length by 1

for (char c = 'a'; c <= 'c'; c++) {

*start = c;

listAllStrings(length-1, start+1);

}

}

}

aaa

aab

aac

aba

abb

abc

aca

acb

acc

baa

bab

…

ccc

Recursion 12

Why using recursion?

Recursion makes your code faster? No!

� overhead for function call and return

� values recomputed

Recursion uses less memory? No!

� overhead for a function call and return (stack
memory)

Recursion makes your code simple?
Sometimes.

� readable code that is easy to debug

