
Recursion

Data structures and Algorithms
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What is recursion?

A way of thinking about problems.

A method for solving problems.

Related to mathematical induction.

In programming:

� a function calls itself

� direct recursion

� a function calls its invoker

� indirect recursion

int f () {

... f(); ...

}

int f () {

... g(); ...

}

int g () {

... f(); ...

}
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Outline of a Recursive Function

if (answer is known)

provide the answer

else

make a recursive call 

to solve a smaller version 

of the same problem

base case

recursive case



Recursion 4

Recursive Factorial Method

n! = n * (n-1) * (n-2) * … * 3 * 2 * 1

n! = n * (n-1)!

0! = 1

Algorithm recursiveFactorial(n)

if n==0 then

return 1

else

return n * recursiveFactorial(n-1)
return 1

recursiveFactorial(1)

call

recursiveFactorial(0)

call

recursiveFactorial(2)

call

recursiveFactorial(3)

call

return 1*1 = 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24 final answer

(4recursiveFactorial )

call
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Fibonacci sequence

1                                for n == 1

fib(n) =   1                                for n == 2 

fib(n-2) + fib(n-1)    for n > 2

1, 1, 2, 3, 5, 8, 13, 21, ….

Algorithm fib(n)

if n<=2 then

return 1

else

return fib(n-2) + fib(n-1)
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Tracing fib(6)
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computation repeats!

Algorithm fib(n)

if n<=2 then

return 1

else

return fib(n-2) + fib(n-1)
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Design a Recursive Algorithm

There must be at least one case (the base case), for a 
small value of n, that can be solved directly

A problem of a given size n can be split into one or 
more smaller versions of the same problem (recursive 
case)

Recognize the base case and provide a solution to it

Devise a strategy to split the problem into smaller 
versions of itself while making progress toward the 
base case

Combine the solutions of the smaller problems in such 
a way as to solve the larger problem
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Euclid's Algorithm

Finds the greatest common divisor of two nonnegative 
integers that are not both 0

Recursive definition of gcd algorithm

� gcd (a, b) = a       (if b is 0)

� gcd (a, b) = gcd (b, a % b)      (if b != 0)

Implementation: int gcd (int a, int b)

{

if (b == 0) 

return a;

else 

return gcd (b, a % b);

}
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Iterative vs. recursive gcd

int gcd (int a, int b)

{

int temp;

while (b != 0)

{

temp = b;

b = a % b;

a  = temp;

}

return a;

}

int gcd (int a, int b)

{

if (b == 0)

return a;

else

return gcd (b, a % b);

}
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Multiple recursion

Tail recursion: a linearly recursive method makes its 
recursive call as its last step.
� e.g. recursive gcd

� Can be easily converted to non-recursive methods 

Binary recursion: there are two recursive calls for each 
non-base case
� e.g. fibonaci sequence

Multiple recursion: makes potentially many recursive 
calls (not just one or two).
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Multiple recursion – Example

List all 'abc' strings of length l

void listAllStrings(int length, char* start)

{

if (length < 1) { //base case: empty string

*start = '\0';

output();

} else { //recursive case: reduce length by 1

for (char c = 'a'; c <= 'c'; c++) {

*start = c;

listAllStrings(length-1, start+1);

}

}

}

aaa

aab

aac

aba

abb

abc

aca

acb

acc

baa

bab

…

ccc
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Why using recursion?

Recursion makes your code faster? No!

� overhead for function call and return

� values recomputed

Recursion uses less memory? No!

� overhead for a function call and return (stack 
memory)

Recursion makes your code simple? 
Sometimes.

� readable code that is easy to debug


