
Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++

Goodrich, Tamassia and Mount (Wiley, 2004)

Analysis of Algorithms

Data Structures and Algorithms

Algorithm Analysis 2

Motivation

What to do with algorithms?

� Programmer needs to develop a working solution

� Client wants problem solved efficiently

� Theoretician wants to understand

Why analyze algorithms?

� To compare different algorithms for the same task

� To predict performance in a new environment

� To set values of algorithm parameters

Algorithm Analysis 3

Outline and Reading

Running time (§4.2)

Pseudo-code

Counting primitive operations (§4.2.2)

Asymptotic notation (§4.2.3)

Asymptotic analysis (§4.2.4)

Case study (§4.2.5)

Algorithm Analysis 4

Running Time

We are interested in the design of "good" data
structures and algorithms.

Measure of "goodness":
� Running time (most important)

� Space usage

The running time of an algorithm typically
grows with the input size, and is affected by
other factors:
� Hardware environments: processor, memory, disk.

� Software environments: OS, compiler.

Focus: input size vs. running time.

Algorithm Analysis 5

Experimental Studies

Write a program
implementing the algorithm

Run the program with inputs
of varying size and
composition

Use a method like
System.currentTimeMillis() or
clock() to get an accurate
measure of the actual
running time

Plot the results
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (
m
s
)

Algorithm Analysis 6

//generate input data

//begin timing

clock_t k=clock();

clock_t start;

do //begin at new tick

start = clock();

while (start == k);

//Run the test _num_itr times

for(int i=0; i<_num_itr; ++i) {

//run the test once

}

//end timing

clock_t end = clock();

//calculate elapsed time

double elapsed_time = double(end - start) / double(CLOCKS_PER_SEC);

Measure Actual
Running Time

Algorithm Analysis 7

Limitations of Experiments

It is necessary to implement the algorithm, which
may be difficult and time consuming

Results may not be indicative of the running time
on other inputs not included in the experiment

In order to compare two algorithms, the same
hardware and software environments must be
used

Algorithm Analysis 8

Theoretical Analysis

Uses a high-level description of the algorithm
instead of an implementation

Takes into account all possible inputs

Allows us to evaluate the speed of an algorithm
independent of the hardware/software
environment

Goal: characterizes running time as a function
of the input size n

Algorithm Analysis 9

Pseudocode

High-level description of
an algorithm

More structured than
English prose

Less detailed than
a program source code

Preferred notation for
describing algorithms

Hides program design
issues

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

currentMax ← A[0]

for i ← 1 to n − 1 do

if A[i] > currentMax then

currentMax ← A[i]

return currentMax

Example: find max
element of an array

Algorithm Analysis 10

Pseudocode Details

Control flow
� if … then … [else …]

� while … do …

� repeat … until …

� for … do …

� Indentation replaces braces

Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
←Assignment

(like = in C++/Java)

= Equality testing
(like == in C++/Java)

n2 Superscripts and other
mathematical formatting
allowed

Algorithm Analysis 11

Primitive Operations

Basic computations
performed by an algorithm

Identifiable in pseudocode

Largely independent from
the programming language

Exact definition not important

Assumed to take a constant
execution time

Examples:

� Performing an
arithmetic operation

� Comparing two
numbers

� Assigning a value to a
variable

� Indexing into an array

� Calling a method

� Returning from a
method

Algorithm Analysis 12

Counting Primitive Operations

By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2

for i ← 1 to n − 1 do 2n

if A[i] > currentMax then 2(n − 1)

currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)

return currentMax 1

Total 8n − 2

Algorithm Analysis 13

Worst case analysis

Average case analysis is difficult for many problems:

� Probability distribution of inputs.

We focus on the worst case analysis

� Easier

� If an algorithm does well in the worst-case, it will perform well on
all cases

0

20

40

60

80

100

120

R
u
n
n
in

g
 T

im
e

1000 2000 3000 4000

Input Size

best case

average case

worst case

Algorithm Analysis 14

Estimating Running Time

Algorithm arrayMax executes 8n − 2 primitive

operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a (8n − 2) ≤ T(n) ≤ b(8n − 2)

Hence, the running time T(n) is bounded by two
linear functions

Algorithm Analysis 15

Growth Rate of Running Time

Changing the hardware/ software
environment

� affects T(n) by a constant factor, but

� does not alter the growth rate of T(n)

The linear growth rate of the running
time T(n) is an intrinsic property of
algorithm arrayMax.

Algorithm Analysis 16

Growth Rates

Growth rates of
functions:

� Linear ≈ n

� Quadratic ≈ n2

� Cubic ≈ n3

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
n

T
(n

)

Cubic

Quadratic

Linear

Algorithm Analysis 17

Growth Rates

Growth rates of
functions:

� Linear ≈ n

� Quadratic ≈ n2

� Cubic ≈ n3

In a log-log chart,
the slope of the line
corresponds to the
growth rate of the
function

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14
1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Cubic

Quadratic

Linear

Algorithm Analysis 18

Constant Factors

The growth rate is
not affected by

� constant factors or

� lower-order terms

Examples

� 102n ++++ 105 is a linear
function

� 105n2 ++++ 108n is a
quadratic function

1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Quadratic

Quadratic

Linear

Linear

Algorithm Analysis 19

Big-Oh Notation Example

Given functions f(n) and g(n), we say that
f(n) is O(g(n)) if there are positive constants
c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

Algorithm Analysis 20

Big-Oh Notation Example

Example:
2n + 10 is O(n)

� 2n + 10 ≤ cn

� (c − 2) n ≥ 10

� n ≥ 10/(c − 2)

� Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000

n

3n

2n+10

n

Algorithm Analysis 21

Big-Oh Notation Example (cont.)

Example: the function
n2 is not O(n)

� n2 ≤ cn

� n ≤ c

� The above inequality
cannot be satisfied since
c must be a constant

1

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1,000
n

n^2

100n

10n

n

Algorithm Analysis 22

More Big-Oh Examples

7n-2
7n-2 is O(n)

need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

� 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

� 3 log n + 5

3 log n + 5 is O(log n)

need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2

Algorithm Analysis 23

Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the
growth rate of a function

The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

We can use the big-Oh notation to rank functions
according to their growth rate

YesYesSame growth

YesNof(n) grows more

NoYesg(n) grows more

g(n) is O(f(n))f(n) is O(g(n))

Algorithm Analysis 24

{n3}

{n2}

Classes of Functions

Let {g(n)} denote the class (set) of functions
that are O(g(n))

We have
{n} ⊂ {n2} ⊂ {n3} ⊂ {n4} ⊂ {n5} ⊂ …

where the containment is strict

{n}

Algorithm Analysis 25

Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

Use the smallest possible class of functions

� Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class

� Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

Algorithm Analysis 26

Asymptotic Algorithm Analysis
The asymptotic analysis of an algorithm determines the running
time in big-Oh notation

To perform the asymptotic analysis

� We find the worst-case number of primitive operations executed as
a function of the input size

� We express this function with big-Oh notation

Example:

� We determine that algorithm arrayMax executes at most 8n − 2

primitive operations

� We say that algorithm arrayMax "runs in O(n) time"

Since constant factors and lower-order terms are eventually
dropped anyhow, we can disregard them when counting primitive
operations

Algorithm Analysis 27

Seven Important Functions

Seven functions that
often appear in
algorithm analysis:

� Constant ≈ 1

� Logarithmic ≈ log n

� Linear ≈ n

� N-Log-N ≈ n log n

� Quadratic ≈ n2

� Cubic ≈ n3

� Exponential ≈ 2n 1E+0

1E+2

1E+4

1E+6

1E+8

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

1E+24

1E+26

1E+28

1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

T
(n

)

Cubic

Quadratic

Linear

Algorithm Analysis 28

Seven Important Functions

Algorithm Analysis 29

Asymptotic Analysis

Caution: 10100n vs. n2

3125192n

2448831n4

42,4265,4777072n2

7,826,087166,6664,09620nlogn

9,000,000150,0002,500400n

1 hour1 minute1 second

Maximum Problem Size (n)Running

Time

Algorithm Analysis 30

Computing Prefix Averages

We illustrate asymptotic
analysis with two algorithms
for prefix averages

The i-th prefix average of an
array X is average of the first
(i + 1) elements of X

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Problem: compute the array A
of prefix averages of another
array X

Applications in economics and
statistics

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

Algorithm Analysis 31

Prefix Averages (Quadratic)
The following algorithm computes prefix averages in
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A ← new array of n integers n

for i ← 0 to n − 1 do n

s ← X[0] n

for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)

A[i] ← s / (i + 1) n

return A 1

Algorithm Analysis 32

Arithmetic Progression

The running time of prefixAverages1 is
O(1 + 2 + …+ n)

or
O(n(n + 1) / / / / 2)

Thus, the algorithm prefixAverages1 runs
in O(n2) time

Algorithm Analysis 33

Prefix Averages (Linear)

The following algorithm computes prefix averages in
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A ← new array of n integers n

s ← 0 1

for i ← 0 to n − 1 do n

s ← s + X[i] n

A[i] ← s / (i + 1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time

Algorithm Analysis 34

Relatives of Big-Oh,
Intuition for Asymptotic Notation

Big-Oh

� f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)

Big-Omega

� f(n) is Ω(g(n)) if f(n) is asymptotically
greater than or equal to g(n)

� f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant
n0 ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n0

Big-Theta

� f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

� f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 and an
integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0

