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Motivation

What to do with algorithms?

� Programmer needs to develop a working solution

� Client wants problem solved efficiently

� Theoretician wants to understand

Why analyze algorithms?

� To compare different algorithms for the same task

� To predict performance in a new environment

� To set values of algorithm parameters
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Outline and Reading

Running time (§4.2)

Pseudo-code

Counting primitive operations (§4.2.2)

Asymptotic notation (§4.2.3)

Asymptotic analysis (§4.2.4)

Case study (§4.2.5)
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Running Time

We are interested in the design of "good" data 
structures and algorithms.

Measure of "goodness":
� Running time (most important)

� Space usage

The running time of an algorithm typically 
grows with the input size, and is affected by 
other factors:
� Hardware environments: processor, memory, disk.

� Software environments: OS, compiler.

Focus: input size vs. running time.
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Experimental Studies

Write a program 
implementing the algorithm

Run the program with inputs 
of varying size and 
composition

Use a method like 
System.currentTimeMillis() or 
clock() to get an accurate 
measure of the actual 
running time

Plot the results
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//generate input data

//begin timing

clock_t k=clock();

clock_t start;

do //begin at new tick

start = clock();  

while (start == k);

//Run the test _num_itr times

for(int i=0; i<_num_itr; ++i) {

//run the test once

}

//end timing

clock_t end = clock();

//calculate elapsed time

double elapsed_time = double(end - start) / double(CLOCKS_PER_SEC);

Measure Actual 
Running Time
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Limitations of Experiments

It is necessary to implement the algorithm, which 
may be difficult and time consuming

Results may not be indicative of the running time 
on other inputs not included in the experiment

In order to compare two algorithms, the same 
hardware and software environments must be 
used
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Theoretical Analysis

Uses a high-level description of the algorithm 
instead of an implementation

Takes into account all possible inputs

Allows us to evaluate the speed of an algorithm 
independent of the hardware/software 
environment

Goal: characterizes running time as a function 
of the input size n
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Pseudocode

High-level description of 
an algorithm

More structured than 
English prose

Less detailed than 
a program source code

Preferred notation for 
describing algorithms

Hides program design 
issues

Algorithm arrayMax(A, n)

Input array A of n integers

Output maximum element of A

currentMax ← A[0]

for i ← 1 to n − 1 do

if A[i] > currentMax then

currentMax ← A[i]

return currentMax

Example: find max 
element of an array
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Pseudocode Details

Control flow
� if … then … [else …]

� while … do …

� repeat … until …

� for … do …

� Indentation replaces braces 

Method declaration
Algorithm method (arg [, arg…])

Input …

Output …

Method call
var.method (arg [, arg…])

Return value
return expression

Expressions
←Assignment

(like = in C++/Java)

= Equality testing
(like == in C++/Java)

n2 Superscripts and other 
mathematical formatting 
allowed
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Primitive Operations

Basic computations 
performed by an algorithm

Identifiable in pseudocode

Largely independent from 
the programming language

Exact definition not important

Assumed to take a constant 
execution time

Examples:

� Performing an 
arithmetic operation

� Comparing two 
numbers

� Assigning a value to a 
variable

� Indexing into an array

� Calling a method

� Returning from a 
method
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Counting Primitive Operations

By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax ← A[0] 2

for i ← 1 to n − 1 do 2n

if A[i] > currentMax then 2(n − 1)

currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)

return currentMax 1

Total 8n − 2
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Worst case analysis

Average case analysis is difficult for many problems:

� Probability distribution of inputs.

We focus on the worst case analysis

� Easier

� If an algorithm does well in the worst-case, it will perform well on 
all cases
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Estimating Running Time

Algorithm arrayMax executes 8n − 2 primitive 

operations in the worst case.  Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

Let T(n) be worst-case time of arrayMax. Then
a (8n − 2) ≤ T(n) ≤ b(8n − 2)

Hence, the running time T(n) is bounded by two 
linear functions
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Growth Rate of Running Time

Changing the hardware/ software 
environment 

� affects T(n) by a constant factor, but

� does not alter the growth rate of T(n)

The linear growth rate of the running 
time T(n) is an intrinsic property of 
algorithm arrayMax. 
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Growth Rates

Growth rates of 
functions:

� Linear ≈ n

� Quadratic ≈ n2

� Cubic ≈ n3
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Growth Rates

Growth rates of 
functions:

� Linear ≈ n

� Quadratic ≈ n2

� Cubic ≈ n3

In a log-log chart, 
the slope of the line 
corresponds to the 
growth rate of the 
function
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Constant Factors

The growth rate is 
not affected by

� constant factors or 

� lower-order terms

Examples

� 102n ++++ 105 is a linear 
function

� 105n2 ++++ 108n is a 
quadratic function
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Big-Oh Notation Example

Given functions f(n) and g(n), we say that 
f(n) is O(g(n)) if there are positive constants
c and n0 such that

f(n) ≤ cg(n)  for n ≥ n0
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Big-Oh Notation Example

Example: 
2n + 10 is O(n)

� 2n + 10 ≤ cn

� (c − 2) n ≥ 10

� n ≥ 10/(c − 2)

� Pick c = 3 and n0 = 10
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Big-Oh Notation Example (cont.)

Example: the function 
n2 is not O(n)

� n2 ≤ cn

� n ≤ c

� The above inequality 
cannot be satisfied since 
c must be a constant 
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More Big-Oh Examples

7n-2
7n-2 is O(n)

need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

� 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

� 3 log n + 5

3 log n + 5 is O(log n)

need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2
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Big-Oh and Growth Rate

The big-Oh notation gives an upper bound on the 
growth rate of a function

The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)

We can use the big-Oh notation to rank functions 
according to their growth rate

YesYesSame growth

YesNof(n) grows more

NoYesg(n) grows more

g(n) is O(f(n))f(n) is O(g(n))
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{n3}

{n2}

Classes of Functions

Let {g(n)} denote the class (set) of functions 
that are O(g(n))

We have
{n} ⊂ {n2} ⊂ {n3} ⊂ {n4} ⊂ {n5} ⊂ …

where the containment is strict

{n}
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Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms

2. Drop constant factors

Use the smallest possible class of functions

� Say “2n is O(n)” instead of “2n is O(n2)”

Use the simplest expression of the class

� Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”
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Asymptotic Algorithm Analysis
The asymptotic analysis of an algorithm determines the running 
time in big-Oh notation

To perform the asymptotic analysis

� We find the worst-case number of primitive operations executed as 
a function of the input size

� We express this function with big-Oh notation

Example:

� We determine that algorithm arrayMax executes at most 8n − 2

primitive operations

� We say that algorithm arrayMax "runs in O(n) time"

Since constant factors and lower-order terms are eventually 
dropped anyhow, we can disregard them when counting primitive 
operations
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Seven Important Functions

Seven functions that 
often appear in 
algorithm analysis:

� Constant ≈ 1

� Logarithmic ≈ log n

� Linear ≈ n

� N-Log-N ≈ n log n

� Quadratic ≈ n2

� Cubic ≈ n3

� Exponential ≈ 2n 1E+0
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Seven Important Functions
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Asymptotic Analysis

Caution: 10100n vs. n2

3125192n

2448831n4 

42,4265,4777072n2

7,826,087166,6664,09620nlogn

9,000,000150,0002,500400n

1 hour1 minute1 second

Maximum Problem Size (n)Running

Time
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Computing Prefix Averages

We illustrate asymptotic 
analysis with two algorithms 
for prefix averages

The i-th prefix average of an 
array X is average of the first 
(i + 1) elements of X

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

Problem: compute the array A
of prefix averages of another 
array X

Applications in economics and 
statistics
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Prefix Averages (Quadratic)
The following algorithm computes prefix averages in 
quadratic time by applying the definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A ← new array of n integers n

for i ← 0 to n − 1 do n

s ← X[0] n

for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)

A[i] ← s / (i + 1) n

return A 1
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Arithmetic Progression

The running time of prefixAverages1 is
O(1 + 2 + …+ n)

or
O( n(n + 1) / / / / 2 )

Thus, the algorithm prefixAverages1 runs 
in O(n2) time 
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Prefix Averages (Linear)

The following algorithm computes prefix averages in 
linear time by keeping a running sum

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A ← new array of n integers n

s ← 0 1

for i ← 0 to n − 1 do n

s ← s + X[i] n

A[i] ← s / (i + 1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time 
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Relatives of Big-Oh,
Intuition for Asymptotic Notation

Big-Oh

� f(n) is O(g(n)) if f(n) is asymptotically 
less than or equal to g(n)

Big-Omega

� f(n) is Ω(g(n)) if f(n) is asymptotically 
greater than or equal to g(n)

� f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant 
n0 ≥ 1 such that f(n) ≥ c•g(n) for n ≥ n0

Big-Theta

� f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

� f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 and an 
integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0


