Data Structures and Algorithms

Sorting
Outline

• Merge Sort
• Quick Sort
• Sorting Lower Bound
• Bucket-Sort
• Radix Sort
Merge Sort

7 2 | 9 4 → 2 4 7 9

7 | 2 → 2 7

7 → 7 2 → 2

9 | 4 → 4 9

9 → 9 4 → 4
Divide-and-Conquer

• Divide-and-conquer is a general algorithm design paradigm:
 – Divide: divide the input data S in two disjoint subsets S_1 and S_2
 – Recur: solve the subproblems associated with S_1 and S_2
 – Conquer: combine the solutions for S_1 and S_2 into a solution for S
• The base case for the recursion are subproblems of size 0 or 1

• Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
• Like heap-sort
 – It uses a comparator
 – It has $O(n \log n)$ running time
• Unlike heap-sort
 – It does not use an auxiliary priority queue
 – It accesses data in a sequential manner (suitable to sort data on a disk)
Merge-Sort

• Merge-sort on an input sequence S with n elements consists of three steps:
 – Divide: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
 – Recur: recursively sort S_1 and S_2
 – Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm $mergeSort(S, C)$

Input sequence S with n elements, comparator C

Output sequence S sorted according to C

if $S.size() > 1$

$(S_1, S_2) \leftarrow partition(S, n/2)$

$mergeSort(S_1, C)$

$mergeSort(S_2, C)$

$S \leftarrow merge(S_1, S_2)$
Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B.

- Merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes $O(n)$ time.

Algorithm $merge(A, B)$

Input sequences A and B with $n/2$ elements each

Output sorted sequence of $A \cup B$

$S \leftarrow$ empty sequence

while $\neg A.isEmpty() \land \neg B.isEmpty()$

 if $A.first().element() < B.first().element()$
 $S.insertLast(A.remove(A.first()))$
 else
 $S.insertLast(B.remove(B.first()))$

while $\neg A.isEmpty()$

 $S.insertLast(A.remove(A.first()))$

while $\neg B.isEmpty()$

 $S.insertLast(B.remove(B.first()))$

return S
Merge-Sort Tree

• An execution of merge-sort is depicted by a binary tree
 – each node represents a recursive call of merge-sort and stores
 • unsorted sequence before the execution and its partition
 • sorted sequence at the end of the execution
 – the root is the initial call
 – the leaves are calls on subsequences of size 0 or 1

```
[7 2 | 9 4] → [2 4 7 9]
```

```
[7 | 2] → [2 7]
[9 | 4] → [4 9]
```

```
[7] → [7]
[2] → [2]
[9] → [9]
[4] → [4]
```
Execution Example

• Partition

7 2 9 4 | 3 8 6 1
→ 1 2 3 4 6 7 8 9

7 2 9 4
→ 2 4 7 9

3 8 6 1
→ 1 3 8 6

7 2 9 4
→ 2 7

9 4 4 9
→ 4 9

3 8 6 1
→ 3 8

6 1 1 6
→ 1 6

7 2 9 4
→ 7

3 8 6 1
→ 3

6 1 1 6
→ 1

Phạm Bảo Sơn DSA
Execution Example (cont.)

• Recursive call, partition
Execution Example (cont.)

• Recursive call, partition
Execution Example (cont.)

- Recursive call, base case

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4
---------
2 4 7 9
```

```
7 2 9 4
---------
4 9
3 8
```

```
7 2 9 4
---------
7
```

```
7 2 9 4
---------
2
9
4
```

```
7 2 9 4
---------
2
9
4
---------
3 8
3 8
6 1
1 6
---------
1
6
1
---------
2
2
9
9
4
4
---------
3
3
8
8
6
6
---------
7
7
2
2
---------
7
7
2
2
```
Execution Example (cont.)

- Recursive call, base case

```
7 2 9 4 | 3 8 6 1
```

```
7 2 | 9 4
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```

```
7 2 9 4 | 3 8 6 1
```
Execution Example (cont.)

- Merge

7 2 9 4 | 3 8 6 1

7 2 | 9 4

7 2 → 2 7

9 4 4 9

9 6 4

3 3 8

6 6 1

3 8 3 8 1 6

1 6

7 2 9 4 | 3 8 6 1

1 2 3 4 6 7 8 9

Phạm Bảo Sơn DSA
Execution Example (cont.)

- Recursive call, …, base case, merge

Phạm Bảo Sơn DSA
Execution Example (cont.)

- Merge

```
7 2 9 4 | 3 8 6 1
3 8 6 1
1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 → 2 4 7 9
3 8 6 1
1 3 8 6
```

```
7 → 7  2 → 2  9 → 9  4 → 4
3 → 3  8 → 8  6 → 6  1 → 1
```

Phạm Bảo Sơn DSA
Execution Example (cont.)

- Recursive call, ..., merge, merge

```
7 2 9 4 | 3 8 6 1  
```

```
[7, 2, 9, 4] → [2, 4, 7, 9] → [1, 2, 3, 4, 6, 7, 8, 9]
```

```
7 | 2 → 2 7
9 4 → 4 9
```

```
3 8 6 1 → 1 3 6 8
```

```
7 → 7
2 → 2
9 → 9
4 → 4
```

```
3 → 3
8 → 8
6 → 6
1 → 1
```
Execution Example (cont.)

- Merge

```
| 7 2 9 4 | 3 8 6 1 | 1 2 3 4 6 7 8 9 |
```

```
7 2 9 4    3 8 6 1   1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 2 4 7 9
```

```
3 8 6 1  1 3 6 8
```

```
7 2 9 4    3 8 6 1  1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 2 4 7 9
```

```
3 8 6 1  1 3 6 8
```

```
7 2 9 4    3 8 6 1  1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 2 4 7 9
```

```
3 8 6 1  1 3 6 8
```

```
7 2 9 4    3 8 6 1  1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 2 4 7 9
```

```
3 8 6 1  1 3 6 8
```

```
7 2 9 4    3 8 6 1  1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 2 4 7 9
```

```
3 8 6 1  1 3 6 8
```

```
7 2 9 4    3 8 6 1  1 2 3 4 6 7 8 9
```

```
7 2 | 9 4 2 4 7 9
```

```
3 8 6 1  1 3 6 8
```
Analysis of Merge-Sort

• The height h of the merge-sort tree is $O(\log n)$
 – at each recursive call we divide in half the sequence,
• The overall amount or work done at the nodes of depth i is $O(n)$
 – we partition and merge 2^i sequences of size $n/2^i$
 – we make 2^{i+1} recursive calls
• Thus, the total running time of merge-sort is $O(n \log n)$

<table>
<thead>
<tr>
<th>depth</th>
<th>#seqs</th>
<th>size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>$n/2$</td>
</tr>
<tr>
<td>i</td>
<td>2^i</td>
<td>$n/2^i$</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
</tbody>
</table>

Phạm Bảo Sơn DSA
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>slow, in-place, for small data sets (< 1K)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>slow, in-place, for small data sets (< 1K)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>fast, in-place, for large data sets (1K — 1M)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>fast, sequential data access, for huge data sets (> 1M)</td>
</tr>
</tbody>
</table>
Nonrecursive Merge-Sort

public static void mergeSort(Object[] orig, Comparator c) {
 // nonrecursive
 Object[] in = new Object[orig.length]; // make a new temporary array
 System.arraycopy(orig,0,in,0,in.length); // copy the input
 Object[] out = new Object[in.length]; // output array
 Object[] temp; // temp array reference used for swapping
 int n = in.length;
 for (int i=1; i < n; i*=2) { // each iteration sorts all length-2*i runs
 for (int j=0; j < n; j+=2*i) // each iteration merges two length-i pairs
 merge(in,out,c,j,i); // merge from in to out two length-i runs at j
 temp = in; in = out; out = temp; // swap arrays for next iteration
 }
 // the "in" array contains the sorted array, so re-copy it
 System.arraycopy(in,0,orig,0,in.length);
}
public static void mergeSort(Object[] orig, Comparator c) { // nonrecursive
 Object[] in = new Object[orig.length]; // make a new temporary array
 System.arraycopy(orig,0,in,0,in.length); // copy the input
 Object[] out = new Object[in.length]; // output array
 Object[] temp; // temp array reference used for swapping
 int n = in.length;
 for (int i=1; i < n; i*=2) { // each iteration sorts all length-2^i runs
 for (int j=0; j < n; j+=2*i) // each iteration merges two length-i pairs
 merge(in,out,c,j,i); // merge from in to out two length-i runs at j
 temp = in; in = out; out = temp; // swap arrays for next iteration
 }
 // the "in" array contains the sorted array, so re-copy it
 System.arraycopy(in,0,orig,0,in.length);
}

protected static void merge(Object[] in, Object[] out, Comparator c, int start,
 int inc) { // merge in[start..start+inc-1] and in[start+inc..start+2*inc-1]
 int x = start; // index into run #1
 int end1 = Math.min(start+inc, in.length); // boundary for run #1
 int end2 = Math.min(start+2*inc, in.length); // boundary for run #2
 int y = start+inc; // index into run #2 (could be beyond array boundary)
 int z = start; // index into the out array
 while ((x < end1) && (y < end2))
 if (c.compare(in[x],in[y]) <= 0) out[z++] = in[x++];
 else out[z++] = in[y++];
 if (x < end1) // first run didn't finish
 System.arraycopy(in, x, out, z, end1 - x);
 else if (y < end2) // second run didn't finish
 System.arraycopy(in, y, out, z, end2 - y);
}
Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4

7 9 → 7 9

2 → 2

9 → 9
Quick-Sort

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: pick a random element x (called pivot) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
 - Recur: sort L and G
 - Conquer: join L, E and G
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element \(y \) from \(S \) and
 - We insert \(y \) into \(L, E \) or \(G \), depending on the result of the comparison with the pivot \(x \)
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time
- Thus, the partition step of quick-sort takes \(O(n) \) time

Algorithm \textit{partition}(S, p)

\textbf{Input} sequence \(S \), position \(p \) of pivot

\textbf{Output} subsequences \(L, E, G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

\(L, E, G \leftarrow \) empty sequences

\(x \leftarrow S\.remove(p) \)

\textbf{while} \(\neg S\.isEmpty() \)

\(y \leftarrow S\.remove(S\.first()) \)

\textbf{if} \(y < x \)

\(L\.insertLast(y) \)

\textbf{else if} \(y = x \)

\(E\.insertLast(y) \)

\textbf{else} \(\{ y > x \} \)

\(G\.insertLast(y) \)

\textbf{return} \(L, E, G \)
Quick-Sort Tree

• An execution of quick-sort is depicted by a binary tree
 – Each node represents a recursive call of quick-sort and stores
 • Unsorted sequence before the execution and its pivot
 • Sorted sequence at the end of the execution
 – The root is the initial call
 – The leaves are calls on subsequences of size 0 or 1

```
7  4  9  6  2 → 2  4  6  7  9
```

```
4  2 → 2  4
```

```
7  9 → 7  9
```

```
2 → 2
```

```
9 → 9
```

Phạm Bảo Sơn DSA
Execution Example

- Pivot selection

```
7  2  9  4  3  7  6  1
1  2  3  4  6  7  8  9
```

```
7  2  9  4
2  4  7  9
```

```
3  8  6  1
1  3  8  6
```

```
2  2
9  4  4  9
```

```
9  9  4  4
```

```
3  3  8  8
```

Phạm Bảo Sơn DSA
Execution Example (cont.)

- Partition, recursive call, pivot selection

```
7 2 9 4 3 7 6 1 1 2 3 4 6 7 8 9
2 4 3 1 2 4 7 9 3 8 6 1 1 3 8 6
2 2
9 4 4 9
3 3
9 6 4
8 8
```
Execution Example (cont.)

- Partition, recursive call, base case

```
2 4 3 1 2 4 7 3 8 6 1 1 3 8 6
1 → 1
9 4 4 9 3 3
9 9 4 8 8
```
Execution Example (cont.)

• Recursive call, ..., base case, join

```
3  8  6  1
3  → 3
8  → 8
```

```
7  2  9  4  3  7  6  1
1  2  3  4  6  7  8  9
```

```
2  4  3  1  →  1  2  3  4

1  →  1
4  3  →  3  4
```

```
3  8  6  1
1  3  8  6
```

```
9  9
4  →  4
```

Phạm Bảo Sơn DSA
Execution Example (cont.)

- Recursive call, pivot selection
Execution Example (cont.)

• Partition, …, recursive call, base case

Phạm Bảo Sơn DSA
Execution Example (cont.)

• Join, join

1 2 3 4 5 6 7 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

7 9 7 → 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

8 → 8

4 → 4

9 → 9

Phạm Bảo Sơn DSA
Worst-case Running Time

• The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.
• One of L and G has size $n - 1$ and the other has size 0.
• The running time is proportional to the sum
 \[n + (n - 1) + \ldots + 2 + 1 \]
• Thus, the worst-case running time of quick-sort is $O(n^2)$.
Expected Running Time

• Consider a recursive call of quick-sort on a sequence of size s
 – **Good call**: the sizes of L and G are each less than $3s/4$
 – **Bad call**: one of L and G has size greater than $3s/4$

- A call is good with probability $1/2$
 - $1/2$ of the possible pivots cause good calls:

\[
\begin{array}{c}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 \\
\end{array}
\]

Phạm Bảo Sơn DSA
Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2^k
- For a node of with input size s, the input sizes of its children are each at most $s^{3/4}$ or $s/(4/3)$.

Therefore, we have

- For a node of depth $2\log_{4/3}n$, the expected input size is one
- The expected height of the quick-sort tree is $O(\log n)$

The amount or work done at the nodes of the same depth is $O(n)$

Thus, the expected running time of quick-sort is $O(n \log n)$
In-Place Quick-Sort

• Quick-sort can be implemented to run in-place
• In the partition step, we use replace operations to rearrange the elements of the input sequence such that
 − the elements less than the pivot have rank less than \(h \)
 − the elements equal to the pivot have rank between \(h \) and \(k \)
 − the elements greater than the pivot have rank greater than \(k \)
• The recursive calls consider
 − elements with rank less than \(h \)
 − elements with rank greater than \(k \)

Algorithm \(\text{inPlaceQuickSort}(S, l, r) \)

Input sequence \(S \), ranks \(l \) and \(r \)

Output sequence \(S \) with the elements of rank between \(l \) and \(r \) rearranged in increasing order

if \(l \geq r \)
 return

\(i \leftarrow \) a random integer between \(l \) and \(r \)
\(x \leftarrow S.\text{elemAtRank}(i) \)
\((h, k) \leftarrow \text{inPlacePartition}(x) \)
\(\text{inPlaceQuickSort}(S, l, h - 1) \)
\(\text{inPlaceQuickSort}(S, k + 1, r) \)
In-Place Partitioning

- Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

 \[
 \begin{array}{cc}
 j & k \\
 \end{array}
 \]

 \[
 \begin{array}{cccccccccccccccc}
 3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9 \\
 \end{array}
 \]

 (pivot = 6)

- Repeat until j and k cross:
 - Scan j to the right until finding an element \(\geq x \).
 - Scan k to the left until finding an element \(< x \).
 - Swap elements at indices j and k

 \[
 \begin{array}{cccccccccccccccc}
 3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9 \\
 \end{array}
 \]
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$ expected</td>
<td>in-place, randomized, fastest (good for large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>sequential data access, fast (good for huge inputs)</td>
</tr>
</tbody>
</table>
public static void quickSort (Object[] S, Comparator c) {
 if (S.length < 2) return; // the array is already sorted in this case
 quickSortStep(S, c, 0, S.length-1); // recursive sort method
}

private static void quickSortStep (Object[] S, Comparator c,
 int leftBound, int rightBound) {
 if (leftBound >= rightBound) return; // the indices have crossed
 Object temp; // temp object used for swapping
 Object pivot = S[rightBound];
 int leftIndex = leftBound; // will scan rightward
 int rightIndex = rightBound-1; // will scan leftward
 while (leftIndex <= rightIndex) { // scan right until larger than the pivot
 while ((leftIndex <= rightIndex) && (c.compare(S[leftIndex], pivot)<=0))
 leftIndex++;
 // scan leftward to find an element smaller than the pivot
 while ((rightIndex >= leftIndex) && (c.compare(S[rightIndex], pivot)>=0))
 rightIndex--;
 if (leftIndex < rightIndex) { // both elements were found
 temp = S[rightIndex];
 S[rightIndex] = S[leftIndex]; // swap these elements
 S[leftIndex] = temp;
 }
 } // the loop continues until the indices cross
 temp = S[rightBound]; // swap pivot with the element at leftIndex
 S[rightBound] = S[leftIndex];
 S[leftIndex] = temp; // the pivot is now at leftIndex, so recurse
 quickSortStep(S, c, leftBound, leftIndex-1);
 quickSortStep(S, c, leftIndex+1, rightBound);

Sorting Lower Bound
Comparison-Based Sorting

• Many sorting algorithms are comparison based.
 – They sort by making comparisons between pairs of objects
 – Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

• Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort \(n \) elements, \(x_1, x_2, \ldots, x_n \).

\[
\text{Is } x_i < x_j? \\
\text{yes} \quad \text{no}
\]
Counting Comparisons

• Let us just count comparisons then.
• Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree.

```
\begin{tikzpicture}[level distance=1.5cm,
                      level 1/.style={sibling distance=3cm},
                      level 2/.style={sibling distance=1.5cm},
                      level 3/.style={sibling distance=0.75cm}]

  \node {$x_i < x_j$}
    child {node {$x_a < x_b$} 
      child {node {$x_e < x_f$}}
      child {node {$x_k < x_l$}}}
    child {node {$x_c < x_d$} 
      child {node {$x_m < x_o$}}
      child {node {$x_p < x_q$}}};
\end{tikzpicture}
```
Decision Tree Height

- The height of this decision tree is a lower bound on the running time.
- Every possible input permutation must lead to a separate leaf output.
 - If not, some input ...4...5... would have same output ordering as ...
 5...4..., which would be wrong.
- Since there are n!=1*2*...*n leaves, the height is at least log \(n! \)
The Lower Bound

- Any comparison-based sorting algorithms takes at least \(\log(n!) \) time.
- Therefore, any such algorithm takes time at least \(\Omega(n \log n) \).

\[
\log(n!) \geq \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2) \log(n/2).
\]

- That is, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time.
Bucket-Sort and Radix-Sort
Bucket-Sort

- Let be S be a sequence of n (key, element) entries with keys in the range $[0, N - 1]$
- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)
 Phase 1: Empty sequence S by moving each entry (k, o) into its bucket $B[k]$
 Phase 2: For $i = 0, ..., N - 1$, move the entries of bucket $B[i]$ to the end of sequence S
- Analysis:
 - Phase 1 takes $O(n)$ time
 - Phase 2 takes $O(n + N)$ time
Bucket-sort takes $O(n + N)$ time

Algorithm $bucketSort(S, N)$

Input sequence S of (key, element) items with keys in the range $[0, N - 1]$
Output sequence S sorted by increasing keys
$B \leftarrow$ array of N empty sequences
while $\neg S.isEmpty()$
 $f \leftarrow S.first()$
 $(k, o) \leftarrow S.remove(f)$
 $B[k].insertLast((k, o))$
for $i \leftarrow 0$ to $N - 1$
 while $\neg B[i].isEmpty()$
 $f \leftarrow B[i].first()$
 $(k, o) \leftarrow B[i].remove(f)$
 $S.insertLast((k, o))$
Example

- **Key range** $[0, 9]$

 $7, d \rightarrow 1, c \rightarrow 3, a \rightarrow 7, g \rightarrow 3, b \rightarrow 7, e$

 Phase 1

 $1, c \rightarrow 3, a \rightarrow 3, b \rightarrow 7, d \rightarrow 7, g \rightarrow 7, e$

 Phase 2

 $1, c \rightarrow 3, a \rightarrow 3, b \rightarrow 7, d \rightarrow 7, g \rightarrow 7, e$

Phạm Bảo Sơn DSA
Properties and Extension

- **Key-type Property**
 - The keys are used as indices into an array and cannot be arbitrary objects
 - No external comparator

- **Stable Sort Property**
 - The relative order of any two items with the same key is preserved after the execution of the algorithm

Extensions

- Integer keys in the range \([a, b]\)
 - Put entry \((k, o)\) into bucket \(B[k - a]\)

- String keys from a set \(D\) of possible strings, where \(D\) has constant size (e.g., names of the 50 U.S. states)
 - Sort \(D\) and compute the rank \(r(k)\) of each string \(k\) of \(D\) in the sorted sequence
 - Put entry \((k, o)\) into bucket \(B[r(k)]\)
Lexicographic Order

- A d-tuple is a sequence of d keys (k_1, k_2, \ldots, k_d), where key k_i is said to be the i-th dimension of the tuple.
- Example:
 - The Cartesian coordinates of a point in space are a 3-tuple.
- The lexicographic order of two d-tuples is recursively defined as follows:

$$(x_1, x_2, \ldots, x_d) < (y_1, y_2, \ldots, y_d) \iff x_1 < y_1 \lor x_1 = y_1 \land (x_2, \ldots, x_d) < (y_2, \ldots, y_d)$$

I.e., the tuples are compared by the first dimension, then by the second dimension, etc.
Lexicographic-Sort

- Let C_i be the comparator that compares two tuples by their i-th dimension.
- Let $stableSort(S, C)$ be a stable sorting algorithm that uses comparator C.
- Lexicographic-sort sorts a sequence of d-tuples in lexicographic order by executing d times algorithm $stableSort$, one per dimension.
- Lexicographic-sort runs in $O(dT(n))$ time, where $T(n)$ is the running time of $stableSort$.

Algorithm $lexicographicSort(S)$

Input sequence S of d-tuples
Output sequence S sorted in lexicographic order

for $i ← d$ downto 1
$stableSort(S, C_i)$

Example:

$(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)$
$(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)$
$(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)$
$(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)$
Radix-Sort

- Radix-sort is a specialization of lexicographic-sort that uses bucket-sort as the stable sorting algorithm in each dimension.
- Radix-sort is applicable to tuples where the keys in each dimension \(i \) are integers in the range \([0, N - 1]\).
- Radix-sort runs in time \(O(d(n + N)) \).

Algorithm \(\text{radixSort}(S, N) \)

Input sequence \(S \) of \(d \)-tuples such that \((0, ..., 0) \leq (x_1, ..., x_d) \) and \((x_1, ..., x_d) \leq (N - 1, ..., N - 1)\) for each tuple \((x_1, ..., x_d)\) in \(S \).

Output sequence \(S \) sorted in lexicographic order.

for \(i \leftarrow d \) downto 1

bucketSort\((S, N) \)
Radix-Sort for Binary Numbers

• Consider a sequence of \(n \) \(b \)-bit integers
 \[x = x_{b-1} \ldots x_1 x_0 \]
• We represent each element as a \(b \)-tuple of integers in the range \([0, 1]\) and apply radix-sort with \(N = 2 \)
• This application of the radix-sort algorithm runs in \(O(bn) \) time
• For example, we can sort a sequence of 32-bit integers in linear time

Algorithm \(\text{binaryRadixSort}(S) \)

Input sequence \(S \) of \(b \)-bit integers
Output sequence \(S \) sorted
replace each element \(x \) of \(S \) with the item \((0, x)\)
for \(i \leftarrow 0 \) to \(b - 1 \)
 replace the key \(k \) of each item \((k, x)\) of \(S \) with bit \(x_i \) of \(x \)

\(\text{bucketSort}(S, 2) \)
Example

• Sorting a sequence of 4-bit integers

1001 0010 1001 1001 0001
0010 1110 1101 0001 0010
1101 0001 1101 1110 1001
0001 1110 0010 1110 1101