Data Structures and Algorithms

Analysis of Algorithms
Outline

- Running time
- Pseudo-code
- Big-oh notation
- Big-theta notation
- Big-omega notation
- Asymptotic algorithm analysis
Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.
Running Time

Most algorithms transform input objects into output objects.

Measure of “goodness”:
- Running time
- Space

The running time of an algorithm typically grows with the input size and other factors:
- Hardware environments: processor, memory, disk.
- Software environments: OS, compiler.

Focus: input size vs. running time.
Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like `System.currentTimeMillis()` to get an accurate measure of the actual running time
- Plot the results
Running time: worst case

- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Find alternative method.
- Ideally: characterizes running time as a function of the input size, n.
- Uses a high-level description of the algorithm instead of an implementation.
- Takes into account all possible inputs.
- Allows us to evaluate the speed of algorithms independent of the hardware/software environment.
Pseudocode

- Mix of natural language and programming constructs: human reader oriented.
- High-level description of an algorithm
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm `arrayMax(A, n)`

Input array `A` of `n` integers

Output maximum element of `A`

`currentMax ← A[0]`

for `i ← 1` to `n - 1` do

 if `A[i] > currentMax` then
 `currentMax ← A[i]`

return `currentMax`
Pseudocode Details

- **Control flow**
 - if … then … [else …]
 - while … do …
 - repeat … until …
 - for … do …
 - Indentation replaces braces

- **Method declaration**
 - Algorithm `method (arg [, arg…])`
 - Input …
 - Output …

- **Method call**
 - `var.method (arg [, arg…])`

- **Return value**
 - `return expression`

- **Expressions**
 - Assignment (like `=` in C++/Java)
 - Equality testing (like `==` in C++/Java)
 - Superscripts and other mathematical formatting allowed
 - n^2
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
The Random Access Machine (RAM) Model

- A CPU

- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.
Counting Primitive Operations

By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm $arrayMax(A, n)$

- $currentMax \leftarrow A[0]$
- for $i \leftarrow 1$ to $n - 1$ do
 - if $A[i] > currentMax$ then
 - $currentMax \leftarrow A[i]$
 - { increment counter i }
- return $currentMax$

operations

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>n</th>
<th>$2(n - 1)$</th>
<th>$[0, 2(n - 1)]$</th>
<th>$2(n - 1)$</th>
<th>1</th>
<th>$[5n - 1, 7n - 3]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Worst case analysis

- Average case analysis is typically challenging:
 - Probability distribution of inputs.
- We focus on the worst case analysis: will perform well on every case.
Algorithm *arrayMax* executes $7n - 3$ primitive operations in the worst case. Define:

- $a =$ Time taken by the fastest primitive operation
- $b =$ Time taken by the slowest primitive operation

Let $T(n)$ be worst-case time of *arrayMax*. Then

$$a \,(7n - 3) \leq T(n) \leq b(7n - 3)$$

Hence, the running time $T(n)$ is bounded by two linear functions
Asymptotic Notation

- Is this level of details necessary?
- How important is it to compute the exact number of primitive operations?
- How important are the set of primitive operations?
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm `arrayMax`
Constant Factors

- The growth rate is not affected by:
 - constant factors or
 - lower-order terms

Examples
- $10^2n + 10^5$ is a linear function
- $10^5n^2 + 10^8n$ is a quadratic function
Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$.
Big-Oh Example

Example: $2n + 10$ is $O(n)$
- $2n + 10 \leq cn$
- $(c - 2) n \geq 10$
- $n \geq 10/(c - 2)$
- Pick $c = 3$ and $n_0 = 10$
Big-Oh Example

Example: the function n^2 is not $O(n)$

- $n^2 \leq cn$
- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant
More Big-Oh Examples

- **7n-2**

 7n-2 is \(O(n) \)

 need \(c > 0 \) and \(n_0 \geq 1 \) such that \(7n-2 \leq c \cdot n \) for \(n \geq n_0 \)

 this is true for \(c = 7 \) and \(n_0 = 1 \)

- **3n^3 + 20n^2 + 5**

 3n^3 + 20n^2 + 5 is \(O(n^3) \)

 need \(c > 0 \) and \(n_0 \geq 1 \) such that \(3n^3 + 20n^2 + 5 \leq c \cdot n^3 \) for \(n \geq n_0 \)

 this is true for \(c = 4 \) and \(n_0 = 21 \)

- **3 \log n + 5**

 3 \log n + 5 is \(O(\log n) \)

 need \(c > 0 \) and \(n_0 \geq 1 \) such that \(3 \log n + 5 \leq c \cdot \log n \) for \(n \geq n_0 \)

 this is true for \(c = 8 \) and \(n_0 = 2 \)
Big-Oh and Growth Rate

* The big-Oh notation gives an upper bound on the growth rate of a function.
* The statement “$f(n) \text{ is } O(g(n))$” means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
* We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th>$g(n)$ grows more</th>
<th>$f(n)$ is $O(g(n))$</th>
<th>$g(n)$ is $O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
If is $f(n)$ a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

Use the smallest possible class of functions

- Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”

Use the simplest expression of the class

- Say “$3n + 5$ is $O(n)$” instead of “$3n + 5$ is $O(3n)$”
Asymptotic Algorithm Analysis

The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:
- We find the worst-case number of primitive operations executed as a function of the input size.
- We express this function with big-Oh notation.

Example:
- We determine that algorithm `arrayMax` executes at most $7n - 3$ primitive operations.
- We say that algorithm `arrayMax` “runs in $O(n)$ time.”

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
Seven Important Functions

Seven functions that often appear in algorithm analysis:

- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^2$
- Cubic $\approx n^3$
- Exponential $\approx 2^n$

In a log-log chart, the slope of the line corresponds to the growth rate of the function.
Seven Important Functions
Asymptotic Analysis

Caution: $10^{100}n$ vs. n^2

<table>
<thead>
<tr>
<th>Running</th>
<th>Maximum Problem Size (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 second</td>
</tr>
<tr>
<td>Time</td>
<td></td>
</tr>
<tr>
<td>400n</td>
<td>2,500</td>
</tr>
<tr>
<td>20nlogn</td>
<td>4,096</td>
</tr>
<tr>
<td>$2n^2$</td>
<td>707</td>
</tr>
<tr>
<td>n^4</td>
<td>31</td>
</tr>
<tr>
<td>2^n</td>
<td>19</td>
</tr>
</tbody>
</table>
Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages.
- The i-th prefix average of an array X is average of the first $(i + 1)$ elements of X:
 \[A[i] = \frac{(X[0] + X[1] + \ldots + X[i])}{i+1} \]
- Computing the array A of prefix averages of another array X has applications to financial analysis.
The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm `prefixAverages1(X, n)`

Input array `X` of `n` integers

Output array `A` of prefix averages of `X`

#operations

- `A` ← new array of `n` integers
- `s` ← `X[0]`
- `for` `i` ← `0` to `n - 1` do
 - `for` `j` ← `1` to `i` do
 - `s` ← `s + X[j]`
 - `A[i]` ← `s / (i + 1)`
- return `A`
Arithmetic Progression

- The running time of `prefixAverages1` is $O(1 + 2 + \ldots + n)$.
- The sum of the first n integers is $n(n + 1) / 2$.
 - There is a simple visual proof of this fact.
- Thus, algorithm `prefixAverages1` runs in $O(n^2)$ time.
Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum.

Algorithm \textit{prefixAverages2}(X, n)

\textbf{Input} array \(X\) of \(n\) integers

\textbf{Output} array \(A\) of prefix averages of \(X\)

\(A \leftarrow \text{new array of } n \text{ integers}\)

\(s \leftarrow 0\)

\textbf{for} \(i \leftarrow 0 \text{ to } n - 1 \text{ do}\)

\(s \leftarrow s + X[i]\)

\(A[i] \leftarrow s / (i + 1)\)

\textbf{return} \(A\)

\(\text{Algorithm } \textit{prefixAverages2} \text{ runs in } O(n) \text{ time}\)
Math you need to Review

- Summations
- Logarithms and Exponents

- Proof techniques:
 - Induction
 - Counter example
 - Contradiction
- Basic probability

Properties of logarithms:

\[
\log_b(xy) = \log_b x + \log_b y \\
\log_b (x/y) = \log_b x - \log_b y \\
\log_b x^a = a \log_b x \\
\log_b a = \log_x a / \log_x b
\]

Properties of exponentials:

\[
a^{(b+c)} = a^b a^c \\
a^{bc} = (a^b)^c \\
a^b / a^c = a^{(b-c)} \\
b = a^{\log_a b} \\
b^c = a^{c \log_a b}
\]
Relatives of Big-Oh

- **big-Omega**
 - $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

- **big-Theta**
 - $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that $c' \cdot g(n) \leq f(n) \leq c'' \cdot g(n)$ for $n \geq n_0$
Intuition for Asymptotic Notation

Big-Oh
- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$

big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$

big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
Example Uses of the Relatives of Big-Oh

- **5n^2 is Ω(n^2)**

 \[f(n) \text{ is } Ω(g(n)) \text{ if there is a constant } c > 0 \text{ and an integer constant } n_0 \geq 1 \]
 \[\text{such that } f(n) \geq c \cdot g(n) \text{ for } n \geq n_0 \]

 Let \(c = 5 \) and \(n_0 = 1 \)

- **5n^2 is Ω(n)**

 \[f(n) \text{ is } Ω(g(n)) \text{ if there is a constant } c > 0 \text{ and an integer constant } n_0 \geq 1 \]
 \[\text{such that } f(n) \geq c \cdot g(n) \text{ for } n \geq n_0 \]

 Let \(c = 1 \) and \(n_0 = 1 \)

- **5n^2 is Θ(n^2)**

 \[f(n) \text{ is } Θ(g(n)) \text{ if it is } Ω(n^2) \text{ and } O(n^2). \text{ We have already seen the former, for the latter recall that } f(n) \text{ is } O(g(n)) \text{ if there is a constant } c > 0 \text{ and an integer constant } n_0 \geq 1 \text{ such that } f(n) \leq c \cdot g(n) \text{ for } n \geq n_0 \]

 Let \(c = 5 \) and \(n_0 = 1 \)
References

Chapter 4: Data Structures and Algorithms by Goodrich and Tamassia