Object-Oriented Analysis and Design
Lecture 10: Describe Distribution
Objectives: Describe Distribution

- Explain the purpose of the Describe Distribution activity and when in the lifecycle it is performed
- Describe how the functionality of the system can be distributed across physical nodes
- Model the distribution decisions of the system in the Deployment Model
- Articulate the rationale and considerations that support the architectural decisions
Describe Distribution in Context

[Early Elaboration Iteration]

Define a Candidate Architecture

[Inception Iteration (Optional)]

Perform Architectural Synthesis

Analyze Behavior

Refine the Architecture

(Optional)

Define Components

Design the Database
Describe Distribution Overview

- Software Architecture Document
- Implementation Model
- Deployment Model
Key Concepts: The Deployment View

The Deployment View is an “architecturally significant” slice of the Deployment Model.
Why Distribute?

- Reduce processor load
- Special processing requirements
- Scaling concerns
- Economic concerns
- Distributed access to the system
Distribution Patterns

- Client/Server
 - 3-tier
 - Fat Client
 - Fat Server
 - Distributed Client/Server

- Peer-to-peer
Client/Server Architectures

Thinner client, thicker server

Client A
- Application
- Business Object Services
- Business Object Engine

Client B
- Application
- DCOM
- ADO/R
- CORBA
- Beans

Client C
- WWW Browser

Business Object Server
- COM
- MTS
- Beans
- ETS

Web Server
- HTML
- CGI
- ASP
- Java
- Business Object Services
- Business Object Engine

Database Server(s)
Client/Server: Three-Tier Architecture

Application Services

Business Services

Data Services

Client B

Application

DCOM ADO/R CORBA Beans

Business Object Server

COM MTS Beans ETS

Business Object Services

Business Object Engine

Database Server(s)
Client/Server: “Fat Client” Architecture

Application Services

Business Services

Data Services

Client A

Application
Business Object Services
Business Object Engine

Database Server(s)
Client/Server: Web Application Architecture

Application Services

Business Services

Data Services
Peer-to-Peer Architecture

Application Services
- DCOM
- ADO/R
- CORBA
- Beans

Business Services
- COM
- MTS
- Beans
- ETS

Data Services
- Business Object Services
- Business Object Engine

Application
- Business Object Services
- Business Object Engine
- DCOM
- ADO/R
- CORBA
- Beans
Describe Distribution Steps

- Define the network configuration
- Allocate processes to nodes
- Define the distribution mechanism
Describe Distribution Steps

Define the network configuration
- Allocate processes to nodes
- Define the distribution mechanism
The Network Configuration

- End-user workstation nodes
- "Headless" processing server nodes
- Special configurations
 - Development
 - Test
- Specialized processors
Deployment Model Modeling Elements

- **Node**
 - Physical run-time computational resource
 - Processor node
 - Executes system software
 - Device node
 - Support device
 - Typically controlled by a processor

- **Connection**
 - Communication mechanism
 - Physical medium
 - Software protocol
Example: Network Configuration

- Desktop PC
- Desktop PC
- Registration Server
- Desktop PC
- Course Catalog
- Billing System

<<Campus LAN>>
<<Campus LAN>>
<<legacy>>
<<legacy>>
Describe Distribution Steps

- Define the network configuration
- Allocate processes to nodes
- Define the distribution mechanism
Process-to-Node Allocation Considerations

- Distribution patterns
- Response time and system throughput
- Minimization of cross-network traffic
- Node capacity
- Communication medium bandwidth
- Availability of hardware and communication links
- Rerouting requirements
Example: Process-to-Node Allocation

- Desktop PC -> StudentApplication
- Registration Server
 - <<Campus LAN>>
 - CourseCatalogSystemAccess
 - CourseRegistrationProcess
 - BillingSystemAccess
- Desktop PC -> StudentApplication
- <<Campus LAN>>
- <<legacy>>
 - Course Catalog
- <<legacy>>
 - Billing System
Describe Distribution Steps

- Define the network configuration
- Allocate processes to nodes
- Define the distribution mechanism
RMI was chosen as the implementation mechanism for distribution.
Design Mechanisms: Distribution: RMI

- Distribution characteristics
 - Latency
 - Synchronicity
 - Message Size
 - Protocol
Remote Method Invocation (RMI)

Provided “for free” with RMI for each distributed class
For all classes that realize the Remote interface, a remote stub and a remote skeleton are created. These classes handle the communication that must occur to support distribution.

Any Java class that you want to pass as an argument to an operation on a remote interface must realize the Serializable Interface.

To "distribute" a class in Java, you must define an interface that inherits from Remote. The distributed class needs to realize the defined Remote interface and also inherit from (extend) the UnicastRemoteObject.

One Instance per node

Naming. (from java.rmi)

lookup(name : String) : Remote
Incorporating RMI: Steps

- Provide access to RMI support classes (e.g., Remote and Serializable interfaces, Naming Service)
 - `java.rmi` and `java.io` package in Middleware layer

- For each class to be distributed:
 - Controllers to be distributed are in the Application layer
 - Dependency from the Application to the Middleware layer is needed to access java packages

Deferred

- Define interface for class that realizes Remote
- Have class inherit from `UnicastRemoteObject`
Incorporating RMI: Steps (cont.)

- Have classes for data passed to distributed objects realize the Serializable interface
 - Core data types are in Business Services layer
 - Dependency from Business Services layer to the Middleware layer is needed to access java.rmi
 - Add the realization relationships \{ Deferred \}
- Run pre-processor \{ Out of scope \}

(continued)
Incorporating RMI: Steps (cont.)

- Have distributed class clients lookup the remote objects using the Naming service
 - Most Distributed Class Clients are forms
 - Forms are in the Application layer
 - Dependency from the Application layer to the Middleware layer is needed to access java.rmi
 - Add relationship from Distributed Class Clients to Naming Service

- Create and update interaction diagrams with distribution processing

Deferred
Example: Incorporating RMI

- Business Services
 - University Artifacts (from Business Services)

- Middleware
 - java.rmi
 - Naming (from java.rmi)
 - remote (from java.rmi)
 - Server
 - UnicastRemoteObject (from Server)

- Application
 - Registration Package (from Application)

- Middleware
 - java.io
 - Serializable (from java.io)
Checkpoints: Deployment View

- Have the distributed data update coordination and synchronization issues been addressed and documented?
- Are services that require more rapid response available locally (LAN vs. WAN)?
- Have all redundant server issues been addressed and documented (primary vs. secondary)?
- Are the failure modes documented?
Review: Describe Distribution

- What is the purpose of the Describe Distribution activity?
- What is a node? Describe the two different "types" of nodes.
- Describe some of the considerations when mapping processes to nodes.
- How do you model the Deployment View? What modeling elements and diagrams are used?
Exercise: Describe Distribution

- **Given the following textual information:**
 - Network configuration (e.g., nodes and their connections)
 - What processes run on what nodes?

(continued)
Exercise: Use-Case Analysis

- Produce the following:
 - Deployment diagram depicting:
 - Nodes
 - Connections
 - What processes run on what nodes
Exercise: Review

- Compare your Deployment Model with those developed by the rest of the class.
 - Have nodes and node connections been modeled?
 - Have processes been identified and assigned to nodes? Do the allocations make sense?
 - Are the processes listed beneath the nodes in the Deployment diagram?