
Electronic Notes in Theoretical Computer Science 65 No. 6 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 19 pages

Prefix and Projection onto State
in Duration Calculus

Dimitar P. Guelev 1,2

School of Computer Science, University of Birmingham, UK
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences

Sofia, Bulgaria

Dang Van Hung 3

International Institute for Software Technology, The United Nations University
UNU/IIST, P.O.Box 3058, Macau SAR, China

Abstract

We study a new operator of projection onto state and the prefix operator in the
extension µHDC of DC by quantifiers over state and a polyadic least fixed point
operator. We give axioms and rules to enable deduction in the extension of µHDC
by the new operators. Our axioms can be used to eliminate the new operators
from formulas in a practically significant fragment of µHDC. This entails the
decidability of certain subfragments of this fragment is preserved in the presence of
the new operators.

Introduction

It is widely recognised that the basic operators of DC [ZHR91] such as the
chop operator, the least fixed point operator and the quantifiers [Pan95], are
only theoretically sufficient to specify the behaviour of real time systems. The
proof rules and axioms about these operators are only theoretically adequate
to manipulate the obtained specifications and do verification. In practice it
often pays back to use an extended kit of basic constructs in specifications
and this way achieve brevity in denoting recurring patterns of clear intuitive
meaning. That is why a number of derived operators have been proposed

1 D. Guelev’s work on this article was partially supported through Contract No. I-
1102/2001 by the Ministry of Education and Science of the Republic of Bulgaria.
2 Email: gelevdp@math.bas.bg
3 Email: dvh@iist.unu.edu

c©2002 Published by Elsevier Science B. V.

mailto:gelevdp@math.bas.bg�
mailto:dvh@iist.unu.edu�

Guelev and Dang

by various authors. The use of such operators and derived axioms and rules
about them can turn crucial to keep the complexity of specification and de-
ductive verification by DC reasonably low. Derived operators often make the
correspondence between design and specification by DC simpler and more in-
tuitive. A thoroughly studied set of such operators are e.g. the implementables
[Rav95,Die00]

In this paper we study a new operator of projection onto state and the
prefix operator in the extension of DC by quantifiers over state and a polyadic
least fixed point operator known as µHDC [Gue00a]. Projection onto state
was introduced to DC∗ in [DVH99]. It can be regarded as a real time variant
of a discrete time ITL projection operator as known from [HMM83]. This
operator provides a way to reconcile the true synchrony hypothesis, which says
that computation does not take time in real-time systems, with reality, where
computation does take time, which is difficult to calculate accurately and of
negligible size, but needed to keep the causal ordering of computation steps
clear. By means of projection onto state requirements on concurrent real-time
programs’ behaviour which have been formulated without taking computation
time into account and specifications of this behaviour where computation time
is explicitly accounted of can be put together in µHDC formulas.

We draw attention to the prefix operator, because it allows to straight-
forwardly define properties of initial parts of observed behaviours. Together
with the suffix operator, which is defined symmetrically, it allows to specify
the possibility for an observed behaviour to be part of some behaviour that
extends out of observation into the future and/or into the past.

Along with the definition of the two operators and a proposal of their
application to the specification and verification of concurrent real time pro-
grams, the paper presents the following results: We give comprehensive lists
of axioms and rules which enable deduction in the extension of µHDC by the
new operators. Our axioms can be used as reduction rules which enable the
elimination of the new operators from formulas which commence in specifica-
tions of the proposed kind. This entails that there is a practically significant
fragment of µHDC where the prefix and projection-onto-state operators can
be regarded as derived operators and the decidability of certain subfragments
of this fragment is preserved in the presence of the new operators.

1 Preliminaries on Real Time µHDC

In this paper we present µHDC for the case of real time only. We allow real-
valued state variables [ZRH93], which are used to specify data manipulation in
our example specification of the behaviour of concurrent interleaving processes
by DC with projection and prefix. We do not mention neighbourhood terms
and some of the higher-order quantifiers of µHDC to keep our presentation
concise. That is why the variant of µHDC here is closer to that of µDC from
[Pan95], where µ was first introduced to DC, and HDC from [ZGZ99].

2

Guelev and Dang

1.1 Languages

A µHDC vocabulary consists of constant symbols a, b, c, . . . , function symbols
f , g, . . . and relation symbols R, . . . of specified arities, individual variables x,
y, . . . and boolean state variables P , Q, . . . and real state variables p, q,
Throughout the paper we denote the various kinds of µHDC symbols by the
same letters as here. We rely on the usage of these letters to implicitly indicate
the kinds of the particular symbols in consideration, for the sake of brevity.

Constant symbols, function symbols and relation symbols can be either
rigid or flexible. Rigid symbols are distinguished for a restriction imposed on
their interpretations. Flexible relation symbols of arity 0 and flexible constant
symbols are also called temporal propositional letters and temporal variables
respectively. The letters X, Y , . . . , are tacitly assumed to denote tempo-
ral propositional letters. Individual variables are rigid. State variables are
flexible.

Every µHDC language contains the rigid constant symbol 0, the tempo-
ral variable `, the rigid binary function symbol +, the rigid binary relation
symbols = and ≤, and infinite sets of individual variables, state variables and
temporal propositional letters.

Given the vocabulary of a µHDC language, its state terms s, state expres-
sions S, terms t and formulas ϕ are defined by the BNFs:

s ::= c|x|p|f(s, . . . , s)

S ::= 0|P |R(s, . . . , s)|S ⇒ S

t ::= c|x|∫ S|f(t, . . . , t)

ϕ ::= ⊥|R(t, . . . , t)|¬ϕ|ϕ ∨ ϕ|(ϕ; ϕ)|∃xϕ|∃pϕ|∃Pϕ|µiX . . . X.ϕ, . . . , ϕ

Only rigid constant, function and relation symbols are allowed in state
terms s and state expressions S. Formulas of the kind µiX1 . . . Xm.ϕ1, . . . , ϕn

are well-formed only if X1, . . . , Xm are distinct variables with all their occur-
rences in ϕ1, . . . , ϕn being in the scope of an even number of negations, and
m = n. Terms and formulas built using rigid symbols only are called rigid.

1.2 Semantics

An abstract model M for a µHDC language L is a pair 〈F, I〉, where F
describes the particular structure of time in M , and I describes the meaning
of L’s non-logical symbols in M , including the variables. In this paper F is
always the linearly ordered group of the reals 〈R, 0, +,≤〉. For this reason we
identify models with their interpretation components I.

The auxiliary notation below helps define these interpretations concisely.

Definition 1.1 We denote the set {[τ1, τ2] : τ1, τ2 ∈ R, τ1 ≤ τ2} by I. Given
σ1, σ2 ∈ I, σ1; σ2 stands for σ1 ∪ σ2 iff max σ1 = min σ2. A function f on R
has the finite variability property, if its range is finite and, given τ1, τ2 ∈ R,

3

Guelev and Dang

{τ : f(τ) = c and τ1 ≤ τ < τ2} is a finite union of intervals of the kind [τ ′, τ ′′)
for every c in the range of f .

The finite variability property reflects the well-known fact that {0, 1}-
valued signals and other program variables, which are common parts of mod-
elled systems, change their values only finitely many times in any given bounded
interval of time.

Let L be some µHDC language.

Definition 1.2 An µHDC interpretation I of L is a function on the set of
L’s non-logical symbols, including the variables. The types of the values of I
for symbols of the various kinds are as follows:

I(x) ∈ R I(f) : I×Rn → R I(P) : R → {0, 1}
I(c) : I → R I(R) : I×Rn → {0, 1} I(p) : R → R

Here n stands for the arity of R and f , respectively. Interpretations of state
variables should have the finite variability property. Rigid symbols’ interpre-
tations should not depend on their interval argument at all. That is why they
are often treated as functions of their real arguments only, and just elements
of R in the case of 0-ary symbols.

I(0), I(+), I(≤), I(=) and I(`) should be the corresponding components
of 〈R, 0, +,≤〉, equality on R and λσ. max σ −min σ, respectively.

Definition 1.3 Given an interpretation I of L, the values Iτ (s) of state term
s and Iτ (S) of a state expression S at time point τ , and Iσ(t) of a term t at
an interval σ ∈ I are defined by the clauses:

Iτ (c) = I(c)([τ, τ]) Iτ (p) = I(p)(τ)

Iτ (x) = I(x) Iτ (f(s1, . . . , sn)) = I(f)([τ, τ], Iτ (s1), . . . , Iτ (sn))

Iτ (0) = 0 Iτ (R(s1, . . . , sn)) = I(R)([τ, τ], Iτ (s1), . . . , Iτ (sn))

Iτ (P) = I(P)(τ) Iτ (S1 ⇒ S2) = max{1− Iτ (S1), Iτ (S2)}
Iσ(c) = I(c)(σ) Iσ(

∫
S) =

max σ∫
min σ

Iτ (S)dτ

Iσ(x) = I(x) Iσ(f(t1, . . . , tn)) = I(f)(σ, Iσ(t1), . . . , Iσ(tn))

The choice of [τ, τ] to occur in the clause about Iτ (c) is arbitrary. Only rigid
c are allowed in state expressions, and such c do not depend on the reference in-
terval for their values. The same applies to the clause about Iτ (R(s1, . . . , sn)).

Given a variable V of any kind, interpretations I and J of L are said to
V -agree, if I(s) = J(s) for all non-logical symbols s 6 .= V from L.

Let χA : I → {0, 1} stand for the characteristic (membership) function
of A ⊆ I. Let X1, . . . , Xn be temporal propositional letters from L. Given
A1, . . . , An ⊆ I, we introduce the interpretation IA1,...,An

X1,...,Xn
of L which is defined

by the equalities IA1,...,An

X1,...,Xn
(Xi) = χAi

, i = 1, . . . , n, and IA1,...,An

X1,...,Xn
(s) = I(s) for

4

Guelev and Dang

s 6∈ {X1, . . . , Xn}. Let µjX1 . . . Xn.ϕ1, . . . , ϕn be a formula in L. Then the
mappings Fi :

(
2I

)n → 2I that we define by the equalities:

Fi(A1, . . . , An) = {σ ∈ I : IA1,...,An

X1,...,Xn
, σ |= ϕi}, i = 1, . . . , n,

are monotonic, and consequently the system of equations:

Fi(A1, . . . , An) = Ai, i = 1, . . . , n

has a least solution with respect to A1, . . . , An, relative to the ⊆ ordering
relation. We denote the components of this solution, as they appear in their
standard ordering, by AI,µ1X1...Xn.ϕ1,...,ϕn , . . . , AI,µnX1...Xn.ϕ1,...,ϕn .

Definition 1.4 The modelling relation |= is defined on interpretations I of
L, intervals σ ∈ I and formulas ϕ from L by the clauses:

I, σ 6|= ⊥
I, σ |= R(t1, . . . , tn) iff I(R)(σ, Iσ(t1), . . . , Iσ(tn)) = 1

I, σ |= ¬ϕ iff I, σ 6|= ϕ

I, σ |= ϕ ∨ ψ iff either I, σ |= ψ or I, σ |= ϕ

I, σ |= (ϕ; ψ) iff there exist σ1, σ2 ∈ I such that

σ = σ1; σ2, I, σ1 |= ϕ and I, σ2 |= ψ

I, σ |= ∃V ϕ iff J, σ |= ϕ for some J which V -agrees with I

I, σ |= µiX1 . . . Xn.ϕ1, . . . , ϕn iff σ ∈ AI,µiX1...Xn.ϕ1,...,ϕn

1.3 Abbreviations

We use >, ∧, ⇒, ⇔, ∀, 6=, ≥, <, > as abbreviations and infix notation in the
usual way. The following abbreviations are DC-specific:

1 ­ 0 ⇒ 0 , dSe ­
∫

S = ` ∧ ` 6= 0 , 3ϕ ­ ((>; ϕ);>) , 2ϕ ­ ¬3¬ϕ .

Iteration (.)∗ and positive iteration (.)+ can be defined in µHDC by the clauses

ϕ∗ ­ µX.` = 0 ∨ (ϕ; X) , ϕ+ ­ (ϕ; ϕ∗) .

The state variable quantifier enables the specification of hiding of local
variables [ZGZ99,HX99]. Another use of this quantifier is to express super-
dense chop [ZH96,HX99].

The least fixed point operator in DC enables the straightforward specifica-
tion of recursive invocations in temporal programs. Assume that the temporal
propositional letter X is used to denote a complete execution of some recursive
temporal procedure. Then the behaviour of this procedure can be described by
a formula ϕ which has occurrences of X to denote recursive self-invocations.
Finally, a closed form of the specification of this behaviour can be given by
the formula µ1X.ϕ. The µHDC polyadic form of µ can similarly be used to
specify the behaviour of collections of mutually recursive procedures, as shown
in Section 3 below. Polyadic µ has the same expressive power as unary µ. A

5

Guelev and Dang

polyadic µ formula can be reduced to an equivalent unary µ one using the
Bekič principle (cf. e.g. [AN01]). For instance,

|=µHDC µ1X1X2.ϕ1, ϕ2 ⇔ µX1.[µX2.ϕ2/X2]ϕ1 .

Polyadic µ seems more convenient than unary µ with nested occurrences
of for the purposes of this paper.

2 Definitions of Projection onto State and Prefix

2.1 Projection onto State

The projection (ϕ/S) of formula ϕ onto state expression S holds at interval
σ under interpretation I, if ϕ holds at the interval σλτ.Iτ (S) under the inter-
pretation Iλτ.Iτ (S). The interval σλτ.Iτ (S) is obtained by gluing the parts of
σ that satisfy S. Iλτ.Iτ (S) is obtained by transferring the correspondence of
(truth) values of symbols under I from time points and subintervals of σ to
their images in σλτ.Iτ (S). This definition can be made precise in several ways.
Below we give our choice of doing so.

Let the syntax for µHDC formulas be extended to allow formulas of the
kind (ϕ/S). We use the auxiliary notation below to extend the relation |= to
formulas of this kind.

Let h : R → {0, 1} have the finite variability property, and δh : R → R be
defined by the equality

δh(τ) =

τ∫

0

h(τ ′)dτ ′.

Let Σh = {δh(τ) : τ ∈ R}. By δh, the collection of intervals {τ ∈ R : h(τ) = 1}
is glued into a single interval Σh. Clearly Σh is either a closed interval, or a
semiclosed unbounded interval, or the entire R, and 0 ∈ Σh.

To transfer arbitrary interpretations from R to Σh as embedded in R, we
need a converse of δ. Let δ−1

h : R → 2R be the multiple-valued converse of δh,
which is defined by the equality

δ−1
h (τ ′) = {τ ∈ R : δh(τ) = τ ′}.

We need a monotonic extension of a single-valued branch of δ−1
h to R. The

extension γh with this property we choose to employ can be defined as follows:

γh(τ
′) =





τ ′ − inf Σh + max δ−1
h (inf Σh) if τ ′ < inf Σh < sup Σh;

max δ−1
h (τ ′) if inf Σ ≤ τ ′ < sup Σh;

τ ′ − sup Σh + min δ−1
h (sup Σh) if inf Σh < sup Σh ≤ τ ′;

0 if inf Σh = τ ′ = sup Σh = 0.

Note that the cases above depend on the kind of interval Σh is and not just
on τ ′. The reader should retrace the definition with the various possibilities

6

Guelev and Dang

for Σh in mind, to get used to it.

Definition 2.1 Given an interpretation I of some µHDC language L, the
projection Ih of I onto (the support of) h is the µHDC interpretation of L
which is defined by the equalities:

Ih(x) = I(x) for individual variables x

Ih(c)(σ) = I(c)([γh(min σ), γh(max σ)]) for constants c 6 .= `

Ih(s)(σ, d1, . . . , dn) = I(s)([γh(min σ), γh(max σ)], d1, . . . , dn)

for n-ary function and relation symbols s

Ih(P)(τ) = I(P)(γh(τ)) for state variables P

Given σ ∈ I, the projection σh of σ onto (the support of) h is [δh(min σ), δh(max σ)].

Now let ϕ be a formula and H be a state expression in L, respectively. Let
h = λτ.Iτ (H). Then

I, σ |= (ϕ/H) iff Ih, σh |= ϕ .

Note that with γh defined and used as above, Ih is obtained from I by clipping
off parts of R which are surrounded by parts where h evaluates to 1 only. In
case Σh is (semi)bounded, that is, if inf Σh ∈ R, or sup Σh ∈ R, or both, the
values of I on {τ ∈ R : τ < inf Σh} and {τ ∈ R : τ ≥ sup Σh} are transferred
to Ih with no loss.

2.2 Prefix and Suffix

Informally, I, σ |= pref(ϕ), if some extension of the restriction of I to σ into
the future satisfies ϕ at a possibly longer interval beginning at the same time
point as σ. In the case of suff the extension is sought into the past.

Definition 2.2 Given σ ∈ I(R), interpretations I1 and I2 of µHDC language
L σ-agree, if

I1(x) = I2(x) for individual variables x

I1(c)(σ
′) = I2(c)(σ

′) for constants c, if σ′ ⊆ σ;

I1(s)(σ
′, d1, . . . , dn) = I2(s)(σ

′, d1, . . . , dn) for n-ary function and rela-
tion symbols s, if σ′ ⊆ σ and
d1, . . . , dn ∈ R;

I1(P)(τ ′) = I2(P)(τ ′) for state variables P from L
and min σ ≤ τ ′ < max σ.

The proposition below explains σ-agreeing:

Proposition 2.3 Let σ, σ′ ∈ I and σ′ ⊆ σ. Let I1 and I2 be interpretations
of L which σ-agree, and ϕ be a formula in L. Then I1, σ

′ |= ϕ is equivalent to
I2, σ

′ |= ϕ.

7

Guelev and Dang

We define the unary modal operators pref and suff by the clauses:

I, σ |= pref(ϕ) iff I ′, σ′ |= ϕ for some I ′ and σ′ such that

I ′ σ-agrees with I, σ′ ⊇ σ and min σ′ = min σ.

I, σ |= suff(ϕ) iff I ′, σ′ |= ϕ for some I ′ and σ′ such that

I ′ σ-agrees with I, σ′ ⊇ σ and max σ′ = max σ.

3 Specification by DC with Projection and Prefix

In this section we show how the operators pref and (./.) can be used to specify
the behaviour of interleaving processes and requirements on such behaviour.
We consider real-time programs P of the kind

P1|| . . . ||Pn,

where P1, . . . , Pn are P’s component processes, which run concurrently. The
syntax of individual component processes P is described by the BNF

P ::= skip|x := e|X|delay r|await b|(P ; P)|if b then P else P |
letrec P where X : P ; . . . X : P ;

where x stands for a variable, e,r and b stand for expressions of the appropriate
types and are built using variables, constants and operations (e.g. arithmetic
operations,) and X stands for a subprocess name in letrec. Subprocess name
X may occur in process P only if P is in the scope of a letrec statement
which binds X. We assume that real valued expressions have the syntax of
real µHDC state terms, and boolean valued expressions have the syntax of
µHDC state expressions, for the sake of simplicity.

The statements which appear in the above BNF are executed as follows:

skip Do nothing.

x := e Evaluate e and then set x to the value of e.

delay r Evaluate r and postpone all subsequent action of the relevant
process by the obtained number of time units.

await b Wait until b becomes true and terminate. In case b never becomes
true, await b never terminates.

(P1; P2) Execute P1 first, and, in case P1 terminates, execute P2.

if b then P1 else P2 Evaluate b first. If b is true, then execute P1.
Otherwise execute P2.

X Execute the subprocess labelled X from the innermost running letrec

statement which binds X.

letrec P where X1 : P1; . . . Xn : Pn; Execute P with this statement being
the innermost running letrec statement which binds X1, . . . , Xn.

We denote the set of variables which occur in process Pi by V ar(Pi). We
specify the behaviour of P by µHDC formulas in the µHDC language L(P)

8

Guelev and Dang

with the following non-logical symbols:

A state variable x for every x ∈
n⋃

i=1

V ar(Pi).

Rigid symbols of the appropriate kinds and arities and the same names for
all constants, functions and relations which occur in boolean and real-valued
expressions in P.

We assume that boolean variable x from P are represented by boolean state
variables, and real-valued variables are represented by real state variables.

The boolean state variables Ri and Wi, i = 1, . . . , n. dRie indicates that Pi

performs computation and therefore has exclusive access to the variables from
V ar(Pi) during the reference interval. Wi indicates that Pi has terminated.

The boolean state variable N . dNe indicates that the reference interval
consists of negligible time. N has a key role in our approach to handling the
true synchrony hypothesis by DC with projection onto state. According to
this hypothesis, computation consumes no time, and only awaiting external
synchronisation and explicitly stated delays consume time. We describe be-
haviours of real time programs by taking into account that in fact computation
does take time. However, this time can be regarded as negligible and marked
by N . The key observation in our approach is that models of DC which de-
scribe behaviours of a program P, should satisfy (ϕ/¬N), provided that ϕ is
a DC formula which specifies some property of the behaviours of P under the
true synchrony hypothesis.

Propositional temporal letters X and X ′ for each subprocess name X which
occurs in a letrec statement in P.

The kinds of non-logical symbols which are obligatory for µHDC languages
in general, in particular, an individual variable u.

Given L(P), we introduce a formula A in L(P) which specifies the general
conditions of running P. For each individual subprocess P of Pi, i = 1, . . . , n,
we introduce two µHDC formulas [[P]]i and [[P]]′i. Given a model M of L(P)
and interval σ ∈ I, we define [[P]]i and [[P]]′i so that the following connection
between them and the behaviour of P holds:

I, σ |= 2A ∧ [[P]]i iff I describes a complete finite run of P in σ.

I describes a non-terminating run of P starting at τ0 iff I, [τ0, τ] |= 2A∧ [[P]]′i
for all τ ≥ τ0.

To define A, [[P]]i and [[P]]′i concisely, we use some abbreviations. Let
V ⊆ V ar(Pi). The formula

Ki(V) ­
∧

x∈V ar(Pi)\V
∃u(

∫
(x = u) = `)

together with some conditions introduced below, says that Pi variables, except
eventually the ones from V , change their values neither within the reference
interval, nor at its end. The formula

Si(S) ­ (dN ∧ ¬Rie; Ki(∅) ∧ dRi ∧ Se)

9

Guelev and Dang

says that the reference interval consists of two non-zero-length parts. In the
second part, neither a Pi variable changes its value, nor its value gets accessed
by some other process. The parameter S holds place for a state expression
of how Pi accesses variables in this part. The first part is inserted to allow
interleaving. A is the conjunction of the following formulas:

A0 A rigid formula giving the relevant algebraic properties
of constants, operations and predicates which occurs in
expressions e, r, b.

d¬Ne ⇒
n∧

i=1

Ki(∅) Variables get updated during computation time only.

∧
i=1,...,n

x∈V ar(Pi)

∀u¬(dx = u ∧Rie; dx 6= u ∧ ¬Rie) Each update takes place in-
side the computation

∧
i=1,...,n

x∈V ar(Pi)

∀u¬(dx = u ∧ ¬Rie; dx 6= u ∧Rie) time of some process (where
Ri is true).

∧
1≤i<j≤n

∫
(Ri ∧Rj) = 0 No two processes perform computation at the

same time.
∫

(N ⇔
n∧

i=1

Wi ∨
n∨

i=1

Ri) = ` A part of the behaviour of P is negligible iff
some of the component processes is access-
ing its variables, that is, doing negligible time
computation, or all the processes have termi-
nated.

n∧
i=1

¬(dWie; d¬Wie) Once Pi terminates, it stays terminated.

n∧
i=1

¬(dWi ∧Rie) Terminated processes do not access their variables.

Given i ∈ {1, . . . , n} and subprocess P of Pi, [[P]]i and [[P]]′i are defined by
the clauses:

[[skip]]i ­ dN ∧ ¬Rie
[[x := e]]i ­ dNe ∧ (d¬Rie; dRie ∧ Ki({x})∧

∃u(du = ee; dx = ue); d¬Rie)
[[X]]i ­ X

[[delay r]]i ­ ∃u((Si(u = r); d¬Rie) ∧ u =
∫ ¬N)

[[await b]]i ­ (
∫ ¬(Ri ∨ b) = `; Ki(∅) ∧ dN ∧Ri ∧ be; dN ∧ ¬Rie)

[[(P1; P2)]]i ­ ([[P1]]i; [[P2]]i)

[[if b then P1 else P2]]i ­ (Si(b); [[P1]]i) ∨ (Si(¬b); [[P2]]i)

[[letrec P where ­ µn+1X1 . . . XnY.[[P1]]i, . . . , [[Pn]]i, [[P]]i

X1 : P1; . . . ; Xn : Pn]]i

10

Guelev and Dang

[[skip]]′i ­ pref([[skip]]i) [[delay r]]′i ­ pref([[delay r]]i)

[[x := e]]′i ­ pref([[x := e]]i) [[await b]]′i ­
∫ ¬(Ri ∨ b) = `

[[X]]′i ­ X ′ [[(P1; P2)]]
′
i ­ [[P1]]

′
i ∨ ([[P1]]i; [[P2]]

′
i)

[[if b then P1 else P2]]
′
i ­


 pref(Si(b)) ∨ (Si(b); [[P1]]

′
i)∨

pref(Si(¬b)) ∨ (Si(¬b); [[P2]]
′
i)




[[letrec P whereX1 : P1; . . . ; Xn : Pn]]′i ­
µ2n+1X1 . . . XnX

′
1 . . . X ′

nY.[[P1]]i, . . . , [[Pn]]i, [[P1]]
′
i, . . . , [[Pn]]′i, [[P]]′i

Using [[Pi]]i and [[Pi]]
′
i, i = 1, . . . , n, terminating runs of P can be specified

by the formula

[[P]] ­ 2A ∧
n∧

i=1

([[Pi]]i; dWie)
and initial subintervals of non-terminating runs of P of sufficient duration
satisfy the formula

[[P]]′ ­ 2A ∧ ∨
J⊆{1,...,n},J 6=∅

(
∧
i∈J

[[Pi]]
′
i ∧

∧
i∈{1,...,n}\J

([[Pi]]i; dWie)
)

.

The projection operator allows to put down properties of the behaviours
specified in the above way without keeping in mind that computation time is
taken into account in the specification of these behaviours. Given an interpre-
tation I of L(P) which describes a behaviour of P in some interval σ ∈ I with
computation time taken into account, that is, with N and Ri, i = 1, . . . , n,
becoming 1 here and there, Iλτ.Iτ (¬N) describes the same behaviour of P in
the interval σλτ.Iτ (¬N) under the true synchrony hypothesis, that is, with the
computation time clipped off. Hence, if a requirement ϕ on this behaviour
has been written without accounting of computation time, then the behaviour
will satisfy ϕ iff I, σ |= (ϕ/¬N). Hence a requirement ϕ is generally satisfied
by the terminating runs of P iff

|=µHDC [[P]] ⇒ (ϕ/¬N)

and ϕ is satisfied by the initial subintervals of non-terminating runs of P iff

|=µHDC [[P]]′ ⇒ ¬(¬(ϕ/¬N);>)

Similarly, projections of the kind (./Ri ∨¬N) and (./
∨
j∈J

Rj ∨¬N) can be

used to specify properties of behaviours of the entire program P as observable
by individual component process Pi or a subset {Pj : j ∈ J} of the component
processes, respectively.

4 Axioms and Rules for Projection onto State

In this section we study projection onto state as one of the operators of µHDC.
We formulate some interesting properties of (./.) as µHDC valid formulas and

11

Guelev and Dang

proof rules. We specify a fragment of µHDC with projection onto state which
admits a simple truth preserving translation into µHDC without projection.
This translation can be defined by taking some of our axioms as the transla-
tion rules. The existence of the translation entails a decidability result about
another smaller fragment of µHDC with projection. Finally, we give a general
proof rule about projection.

4.1 Projection onto State and Basic HDC Operators

(1) |=µHDC ϕ ⇔ (ϕ/H) for rigid ϕ from L.

Let σ ∈ I, I be an interpretation of some µHDC language L, H be a
state expression in L and h = λτ.Iτ (H). Then min σh ≤ τ < max σh implies
Ih
τ (H) = 1. Hence

(2) |=µHDC (` =
∫

H/H).

Since max σh −min σh =
max σ∫
min σ

Iτ (H)dτ , Ih
σ (`) = Iσ(

∫
H). This entails that

(3) |=µHDC (` = x/H) ⇔ ∫
H = x

Similar considerations show that

(4) |=µHDC (
∫

S = x/H) ⇔ ∫
(S ∧H) = x.

This means that (./H) can be eliminated from (ϕ/H) in the case of atomic
ϕ with rigid symbols and

∫
subterms only by putting

∫
(S ∧ H) wherever∫

S occurs. (./H) can be eliminated in case ϕ is an atomic flexible formula
R(t1, . . . , tn) which satisfies

∃x(
∫

H = x∧(2(
∫

H = x ⇒ R(t1, . . . , tn))∨2(
∫

H = x ⇒ ¬R(t1, . . . , tn)))

Given this,

|=µHDC R(t1, . . . , tn) ⇔ (R(t1, . . . , tn)/H)

If neither
∫

, nor ` occur in t1, . . . , tn, then

(5) |=µHDC

(dHe;>) ∧ (εR(t1, . . . , tn) ∧ ∫
H = x; dHe;>) ⇒

((εR(t1, . . . , tn) ∧ ` = x;>)/H)

where ε stands for either ¬ or nothing. Straightforward arguments show that:

(6) |=µHDC (¬ϕ/H) ⇔ ¬(ϕ/H)

(7) |=µHDC (ϕ ∨ ψ/H) ⇔ (ϕ/H) ∨ (ψ/H)

(8) |=µHDC ((ϕ; ψ)/H) ⇔ ((ϕ/H); (ψ/H))

(9) |=µHDC (∃V ϕ/H) ⇔ ∃V (ϕ/H), if variable V does not occur in H

(10) |=µHDC ((ϕ/S)/H) ⇔ (ϕ/S ∧H)

(11) |=µHDC ϕ ⇒ ψ implies |=µHDC (ϕ/H) ⇒ (ψ/H)

(12) |=µHDC

∫
(H1 ⇔ H2) = ` implies |=µHDC (ϕ/H1) ⇔ (ϕ/H2)

(13) |=µHDC (ϕ/1) ⇔ ϕ

(14) |=µHDC ((ϕ; ψ)/0) ⇔ (ϕ ∧ ψ/0)

12

Guelev and Dang

4.2 Projection onto State and µ

The valid formulas listed so far are sufficient to deal with (./.) in HDC without
µ by, e.g., driving it towards atomic formulas. Next we extend this approach
a fragment of µHDC which properly contains HDC.

Proposition 4.1 Let H be a state expression, ϕ ­ µiX1 . . . Xn.ϕ1, . . . , ϕn

and none of the occurrences of X1, . . . , Xn in ϕ1, . . . , ϕn be in the scope of
negation, nor in the scope of µ or (./.). Let ψj be obtained from (ϕj/H)
by driving projection inwards and finally replacing (X1/H), . . . , (Xn/H) by
X1, . . . , Xn, respectively, j = 1, . . . , n. Let ψ ­ µiX1 . . . Xn.ψ1, . . . , ψn Then
|=µHDC (ϕ/H) ⇔ ψ

Proof. Consider the finite sets of HDC formulas Φk
1, . . . , Φ

k
n, k < ω, which

are defined by putting:

Φ0
j = {⊥}

Φk+1
j = Φk

j ∪ {[α1/X1, . . . , αn/Xn]ϕi : α1 ∈ Φk
1, . . . , αn ∈ Φk

n}, j = 1, . . . , n

Let Ψk
1, . . . , Ψ

k
n, k < ω, be defined similarly, yet using ψ1, . . . , ψn instead

of ϕ1, . . . , ϕn. Let (Φk
j /H) = {(α/H) : α ∈ Φk

j}, j = 1, . . . , n, k < ω. It can
be shown that every formula from (Φk

j /H) has an equivalent one in Ψk
j and

vice versa.

The restrictions on the use of ¬ in ϕ1, . . . , ϕn entail that I, σ |= ϕ iff
∃k < ω∃α ∈ Φk

i (I, σ |= α). Hence I, σ |= (ϕ/H) is equivalent to ∃k < ω∃α ∈
Φk

i (I, σ |= (α/H)). The latter is equivalent to ∃k < ω∃β ∈ Ψk
i (I, σ |= β), that

is to I, σ |= ψ. 2

Apparently, the most useful corollary to this proposition is:

(16) |=µHDC (ϕ∗/H) ⇔ ((ϕ/H)∗;
∫

H = 0) , |=µHDC (ϕ+/H) ⇔ (ϕ/H)+

4.3 Projection onto State in General

We conclude this section with a general proof rule about (./.). It applies
to virtually all conservative extensions of DC with (./.) with introspective
modalities only. We first give some observations that suggest this rule.

Assume the notation introduced to define (./.). Since the duration of σh

never exceeds that of σ, the condition Ih, σh |= ϕ can be replaced by an
equivalent one of the kind I ′, σh′ |= ϕ, where σh′ = [min σ, min σ + max σh −
min σh] and I ′ is an interpretation of L that behaves on σh′ in the way Ih

does on σh. Next, all the flexible symbols which occur in ϕ can be replaced by
fresh ones, thus obtaining an isomorphic formula ϕ′, and I ′ can be replaced
by an interpretation I ′′ which is defined on these symbols only and yields the
same values on them as I ′ does on the original symbols of ϕ. This allows the
condition Ih, σh |= ϕ to be replaced by I ′′, σh′ |= ϕ′. The latter is equivalent
to

I ′′, σ |= ∃x(
∫

H = x ∧ (` = x ∧ ϕ′;>)),

13

Guelev and Dang

provided x has no free occurrence in ϕ. Now let L′ be the extension of L by
the fresh flexible symbols used to place in ϕ′. Then I ∪ I ′′ is an interpretation
of L′ and

I ∪ I ′′, σ |= (ϕ/H) ⇔ ∃x(
∫

H = x ∧ (` = x ∧ ϕ′;>))

Let us specify the desired relationship between the values of I on the flexible
symbols of ϕ at the subintervals of σ and the values of I ′′ on their counterparts
from ϕ′ at the corresponding subintervals of σh′ by DC formulas. Let R and
R′ be n-place relation symbols. We denote the formula

∀x1 . . . ∀xn∀y∀z




y + z ≤ ∫
H ⇒

 (
∫

H = y; (dHe;>) ∧ ∫
H = z ∧R(x1, . . . , xn); (dHe;>)))

⇔ (` = y; R′(x1, . . . , xn) ∧ ` = z;>)







by R ∼H R′. Let n ≥ 2 and f and f ′ be n − 1-ary function symbols. Then
we denote formula that is obtained by putting f(x1, . . . , xn−1) = xn and
f ′(x1, . . . , xn−1) = xn in place of R(x1, . . . , xn) and R′(x1, . . . , xn) respectively
by f ∼H f ′. For flexible constants c and c′, c ∼H c′ is the result of substituting
c = x1 and c′ = x1 in the respective places in the above formula with n = 1.
The subformula (dHe;>) in R ∼H R′ is to ascertain that the restriction of I to
the subintervals of σ bears enough information to define I ′′ to the subintervals
of σh′, because it is possible to have γh(δh(τ)) > τ , in case h(τ) = 0. For
boolean state variables P and P ′, P ∼H P ′ is

∀x∀y∀z

y + z ≤ ∫

H ⇒

 (

∫
H = y;

∫
H = z ∧ ∫

(P ∧H) = x;>)

⇔ (` = y; ` = z ∧ ∫
P ′ = x;>)







Finally , for real state variables p and p′, p ∼H p′ is

∀x∀y∀z∀t

y + z ≤ ∫

H ⇒

 (

∫
H = y;

∫
H = z ∧ ∫

(p = t ∧H) = x;>)

⇔ (` = y; ` = z ∧ ∫
(p′ = t) = x;>)







Now, given that s1, . . . , sn are the flexible symbols of ϕ, and s′1, . . . , s
′
n are

fresh symbols of the same kinds and arities as s1, . . . , sn, respectively, the rule
can be put down as follows:

(PR)
θ ∧

n∧
i=1

si ∼H s′i ⇒ (` = x; ` = y ∧ [s′1/s1, . . . , s
′
n/sn]ϕ;>)

θ ∧ (
∫

H ≥ x + y; dHe;>) ⇒ ¬(
∫

H = x;
∫

H = y ∧ ¬(ϕ/H); dHe;>)

5 The dP e-fragment of HDC∗ with Projection onto State
is Decidable

The BNF for formulas in the dP e-fragment of HDC∗ is

ϕ ::= ⊥|` = 0|dSe|¬ϕ|ϕ ∨ ϕ|(ϕ; ϕ)|ϕ∗|∃Pϕ

It is known that ∃P and ¬ can be eliminated from HDC∗ dP e formulas, that
is, for every HDC∗ dP e-formula an equivalent quantifier-free and negation-

14

Guelev and Dang

free one in the same vocabulary can be built. A proof in the notation of this
paper can be found in [Gue00b]. The valid equivalences from Subsections
4.1 and 4.2 entail that given such a formula ϕ and a state expression H, an
equivalent ψ to (ϕ/H) can be built with projection occurring in ψ only in
subformulas of the kinds (` = 0/H) and (dSe/H). Yet the valid equivalences

(` = 0/H) ⇔ ` = 0 ∨ d¬He and (dSe/H) ⇔ (dH ⇒ Se) ∧3dHe
show that projection onto state can be eliminated from these subformulas too.
Hence every formula from the dP e-fragment of HDC∗ with projection can be
transformed into an equivalent quantifier- and projection-free one. Validity is
decidable for such formulas, as known from [ZHS93].

6 Axioms and Rules for pref and suff in µHDC

This section is structured after the previous one about (./.) in µHDC.

6.1 pref, suff and Basic HDC Operators

The valid µHDC formulas with pref and suff below make no explicit reference
to µ. Most of them deal with the interaction between pref and the HDC
operators only. To obtain the corresponding equivalences about suff, one
should interchange the operands of (.; .).

(1) |=µHDC pref(ϕ) ⇔ ϕ for rigid ϕ

(2) |=µHDC pref(
∫

S = x) ⇔ ∫
S ≤ x

(3) |=µHDC pref(R(x1, . . . , xn)) for flexible R

(4) |=µHDC pref(f(x1, . . . , xn) = xn+1) for flexible f

(5) |=µHDC pref(c = x) for flexible c 6 .= `

(6) |=µHDC ¬pref(ϕ) ⇒ pref(¬ϕ)

(7) |=µHDC pref(ϕ ∧ ψ) ⇒ pref(ϕ) ∧ pref(ψ)

(8) |=µHDC pref(ϕ ∨ ψ) ⇔ pref(ϕ) ∨ pref(ψ)

(9a) |=µHDC pref((ϕ; ψ)) ⇒ pref(ϕ) ∨ (ϕ; pref(ψ))

(9b) |=µHDC (ϕ; pref(ψ)) ⇒ pref((ϕ; ψ))

(9c) |=µHDC ` = 0∧ suff(ϕ) ⇒ pref(ψ) implies |=µHDC pref(ϕ) ⇒ pref((ϕ; ψ))

(10) |=µHDC pref(∃xϕ) ⇔ ∃xpref(ϕ)

(11) |=µHDC pref(∃Pϕ) ⇔ ∃Ppref(ϕ)

(12) |=µHDC ϕ ⇒ ψ implies |=µHDC pref(ϕ) ⇒ pref(ψ)

(13) |=µHDC (¬pref(ϕ);>) ⇒ ¬ϕ

(14) |=µHDC ϕ ⇒ ¬(¬ψ;>) implies |=µHDC pref(ϕ) ⇒ ψ

(15) |=µHDC pref(pref(ϕ)) ⇔ pref(ϕ)

(16) |=µHDC (pref(ϕ)/H) ⇒ pref((ϕ/H))

Superpositions of pref and suff

(17) |=µHDC ϕ ⇒ 2pref(suff(ϕ))

(18) |=µHDC ϕ ⇒ 2ψ implies |=µHDC pref(suff(ϕ)) ⇒ ψ

15

Guelev and Dang

(19) |=µHDC 3ϕ ⇒ ψ implies |=µHDC ϕ ⇒ pref(suff(ψ))

(20) |=µHDC suff(pref(ϕ)) ⇔ pref(suff(ϕ))

6.2 pref, suff and µ

Just like in the case of projection, the emphasis in the above list of valid
formulas and rules about pref is to enable driving pref and suff towards atomic
formulas to the possible extent. In this subsection we show that this can be
done with some µ formulas too. The fragment of µHDC we take is part of
that from Proposition 4.1.

Let H be a state expression, ψi ­ µiX1 . . . Xn.ϕ1, . . . , ϕn, i = 1, . . . , n
and none of the free occurrences of X1, . . . , Xn in ϕj, j = 1, . . . , n, be in the
scope of negation, nor in the scope of µ, (./.) or a quantifier which binds an
individual variable.

Lemma 6.1 Each of the ϕj, j = 1, . . . , n, is equivalent to a disjunction of
formulas of the kind (α1; . . . ; αl), where either αk ∈ {X1, . . . , Xn} or αk has
no free occurrences of X1, . . . , Xn, k = 1, . . . , l.

Proof. The equivalent formula can be obtained by applying

|=µHDC ∃P (ϕ ∨ ψ) ⇔ ∃Pϕ ∨ ∃Pψ and |=µHDC ∃P (ϕ; ψ) ⇔ (∃Pϕ; ∃Pψ)

and the distributivity of (.; .) over disjunction as reduction rules on subformu-
las of ϕj which have occurrences of X1, . . . , Xn. 2

In the sequel we assume that

ϕj
.
=

mj∨

k=1

(αj,k,0; Xij,k,1
; αj,k,0; . . . ; αj,k,lj,k

; Xij,k,lj,k
; αj,k,lj,k

), i, j = 1, . . . , n

where αj,k,0, . . . , αj,k,lj,k
have no free occurrences of X1, . . . , Xn. Since |=µHDC

ψi ⇔ [ψ1/X1, . . . ψn/Xn]ϕi we have

|=µHDC pref(ψi) ⇔
mj∨

k=1




lj,k∨
p=0

(αj,k,0; ψij,k,1
; . . . ; ψij,k,p

; pref(αj,k,p))∨
lj,k∨
p=1

(αj,k,0; ψij,k,1
; . . . ; ψij,k,p−1

; αj,k,p−1pref(ψij,k,p
))




Substituting Y1, . . . , Yn for pref(ψ1), . . . , pref(ψn) in the above equivalences
suggests that

|=µHDC pref(ψi) ⇔ µiY1 . . . Yn.χ1, . . . , χn, i = 1, . . . , n

where

χi ­
mj∨

k=1




lj,k∨
p=0

(αj,k,0; ψij,k,1
; . . . ; ψij,k,p

; pref(αj,k,p))∨
lj,k∨
p=1

(αj,k,0; ψij,k,1
; . . . ; ψij,k,p−1

; αj,k,p−1; Yij,k,p
)




16

Guelev and Dang

This can be established by a direct check with the definition of pref.

6.3 The Limits of the Expressibility of pref and suff

The valid equivalences about pref and suff from the previous two subsections
entail that these operators can be expressed in the negation-free fragment of
µHDC with the restriction on temporal propositional letters bound by a µ
operator not to occur in the scope of a quantifier over individuals, nor in the
scope of (./.) in this µ operator’s arguments.

Unfortunately, no general proof rule can be formulated about pref and suff.
This is so, because |=µHDC pref((` 6= 0; ϕ)) is equivalent to the satisfiability
of ϕ. Hence, only fragments of µHDC with pref with the same complexity of
validity and satisfiability may have complete axiomatic systems. In particular,
if validity is recursively enumerable and not recursive in some fragment of
µHDC with negation, then satisfiability is not recursively enumerable due to
the famous theorem of Post (cf. e.g. [Sho67]). Hence, such a fragment could
not be recursively axoimatisable.

Remarks and Related Work

As we mentioned in the introduction, the first logic akin to DC to be extended
by a projection operator was discrete-time ITL [HMM83,Mos86,Mos95]. An-
other interesting generalisation of an ITL projection operator introduced in
[Mos86,Mos95] can be found in [He99,Gue00c].

The ideas behind projection onto state in DC can be traced back to an
early variant of DC, where heterogenous time domains consisting of discrete
computation microtime to specify the internal working of a controller, and
dense macrotime for the working of the controlled plant [PD97] were proposed.
In that variant of DC there were two flexible constants ` and η to measure
macro- and micro-time respectively. In our example of specification these
constants can be defined as

∫ ¬N and
∫

N respectively. These duration terms
equal ` in the scope of (./¬N) and (./N) respectively.

Special cases of the prefix operator have been used earlier to abbreviate
notation, see e.g. [Die96,DVH99]. The operators pref and suff can be regarded
as non-deterministic versions of the pair of expanding modalities introduced
to DC in [Pan96].

The semantics of pref, suff and projection onto state given here, and the
proposed axioms and proof rules about these operators aim the greatest pos-
sible generality within real-time µHDC. On the contrary, the proposed way
to specify concurrent temporal programs’ behaviour has been tailored to em-
ploy as few of the extending features of DC as possible. In particular, non-
terminating behaviour, which normally requires either expanding modalities or
unbounded intervals to specify, has been dealt with by almost ordinary means
- with the special condition on [[.]]′ formulas to hold on all the bounded initial

17

Guelev and Dang

subintervals of the considered non-terminating behaviour only. The explicit
account of computation time, which is compensated for by the possibility to
use projection onto state for the formulation of requirements, has also enabled
the specification of assignment without involving super-dense chop (cf. e.g.
[HX99].)

A basic feature of µHDC which was not made use of in the example
behaviour specification, but would certainly be needed to manage a fully-
fledged programming language, is the state variable binding quantifier. It is
needed to specify local variables (cf e.g. [HX99]) which are not included in
our example language for the sake of simplicity. Local variables can commence
in unlimited numbers due to recursive invocations, and therefore cannot be
treated as some of the finitely many variables of global scope and extent which
occur freely in formulas of the kind [[P]]i and [[P]]′i. An appropriate clause of
the definition of e.g. [[.]]i for executing subprocess P with local variable p could
be [[var p; P]]i ­ ∃p[[P]]i

References

[AN01] Arnold, A and D. Niwiński Rudiments of the µ-calculus. Elsevier, 2001.

[Die00] Dierks, H. Specification and Verification of Polling Real-Time Systems.
Ph.D. Thesis, Oldenburg University, 2000.

[Die96] Dietz, C. Graphical formalization of real-time requirements. Proceedings
of FTRTFT’96, LNCS 1135, pp. 366-385, Springer-Verlag, 1996.

[DVH99] Dang Van Hung. Projections: A Technique for Verifying Real-Time
Programs in Duration Calculus. Technical Report 178, UNU/IIST, P.O.
Box 3058, Macau, November 1999.

[Gue00a] Guelev, D. P. A Complete Fragment of Higher-Order Duration µ-
Calculus. Proceedings of FST TCS 2000. LNCS 1974, Sringer Verlag,
2000.

[Gue00b] Guelev, D. P. Interpolation and related results on DC∗. Research Report
203, UNU/IIST, P.O.Box 3058, Macau, June 2000.

[Gue00c] Guelev, D. P. A Complete Proof System for First Order ITL with
Projection. Research Report 202, UNU/IIST, P.O.Box 3058, Macau, June
2000.

[HMM83] Halpern, J., Z. Manna and B. Moszkowski. A Hardware Semantics
Based on Temporal Intervals. Proceedings of ICALP’83, pp. 278-91,
LNCS 154, Springer Verlag, 1983.

[He99] He Jifeng. A Behavioral Model for Co-design. Proceedings of the World
Congress on Formal Methods in the Development of Computing Systems,
September, 1999, pp. 1420-1439, LNCS 1709, Springer Verlag, 1999.

18

Guelev and Dang

[HX99] He Jifeng and Xu Qiwen. Advanced Features of DC and Their
Applications. Millenial Perspectives in Computer Science, Palgrave, 2000.

[Mos86] Moszkowski, B. Executing Temporal Logic Programs. Cambridge
University Press, 1986.

[Mos95] Moszkowski, B. Compositional Reasoning about Projected and Infinite
Time. Proceedings of ICECCS’95, IEEE Computer Society Press, pp.
238-245, Los Alamitos, California, 1995.

[Pan95] Pandya, P. K. Some extensions to Mean-Value Calculus: Expressiveness
and Decidability. Proceedings of CSL’95, LNCS 1092, 1995.

[Pan96] Pandya, P. K. Weak chop inverses and liveness in mean-value calculus.
Proceedings of FTRTFT’96, LNCS 1135, 1996.

[PD97] Pandya, P. K. and Dang Van Hung. Duration Calculus of Weakly
Monotonic Time. Technical Report 122, UNU/IIST, P.O.Box 3058,
Macau, September 1997.

[Rav95] Ravn, A. P. Design of Embedded Real-Time Computing Systems.
Technical report 1995-170, Technical University of Denmark, 1995.

[Sho67] Shoenfield, J. Mathematical Logic. Addison-Wesley, 1967.

[ZGZ99] Zhou Chaochen, D. P. Guelev and Zhan Naijun. A Higher-Order
Duration Calculus. Millenial Perspectives in Computer Science, Palgrave,
2000.

[ZH96] Zhou Chaochen and M. Hansen Chopping a Point. Proceedings of
BCS FACS 7th Refinement Workshop, Electronic Workshop in Computer
Sciences, Springer-Verlag, 1996.

[ZHR91] Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A Calculus of
Durations. Information Processing Letters, 40(5), pp. 269-276, 1991.

[ZHS93] Zhou Chaochen, M.R. Hansen and P. Sestoft. Decidability and
Undecidability Results for Duration Calculus. Proceedings of STACS’93,
Würzburg, LNCS 665, pp. 58-68, February 1993.

[ZRH93] Zhou Chaochen, A.P. Ravn and M.R. Hansen. An Extended Duration
Calculus for Hybrid Real-Time Systems. Hybrid Systems, LNCS 736,
Springer Verlag, 1993.

Remark: UNU/IIST reports are available through http://www.iist.unu.edu.

19

