
A Formal Specification of
an Information Processing System in Duration Calculus

Sheila A. Karipel and Dang Van Hung
United Nations University

International Institute for Software Technology
UNU/IIST, P.O.Box 3058, Macau

ABSTRACT

In this paper, we give a formal specification of an Information
Processing System (IPS) in Duration Calculus. The IPS we are
dealing with is a hard real-time system consisting of two inde-
pendent subsystems that communicate through several I/O chan-
nels with the external environment. It is stated formally that the
requirement for the system is met if the earliest deadline first
(EDF) scheduler is used and certain conditions on the parame-
ters are satisfied.

Keywords: Formal Specification, Duration Calculus, Earlest
Deadline Driven Schedule, Information Systems.

1. INTRODUCTION

Over the years, the rapidly developing technology has made it
possible for information processing systems to handle and pro-
cess substantially more and more information. Though the high
speed technology reduced the computation time considerably,
a more precise information extraction required the application
of highly advanced information processing techniques. These
sophisticated and computationally intensive techniques are ex-
tremely time-bounded within the systems. This called for an
extensive analysis of the design of the systems.

As one of the authors has participated in the earlier development
of an information processing system (IPS) which is a hard real-
time system, it provided the authors an opportunity to take it
up as a case study for demonstrating the powerful benefits of
using Duration Calculus (DC) as a formalism for specifying and
verifying areal complex system.

Hard real-time systems have been defined as those containing
processes that have deadlines which cannot be missed [1]. Such
deadlines have been termed hard: they have to be met under all
circumstances.

Meeting hard deadlines imposes constraints on the allocation of
physical and logical resources of the system at runtime. Typ-
ically, the resources are allocated by a scheduling algorithm
whose purpose is to interleave the executions of processes in the
system to achieve a particular goal which in the case of hard
real-time systems is that no deadline is missed.

In this paper, we attempt to specify an appropriate scheduler that
controls the execution of the independent tasks and resources
within a subsystem. With a formal specification of IPS and the
schedulers it used, we are able to verify that the system task set
will meet the required deadlines.

P1

A1A2

P2

B3

B2B1

C

C1

C2

A3 A4

Figure 1. The Information Processing System

The IPS

The IPS as shown in figure 1 is an integration of 2 subsystems
viz. P1 and P2 with identical hardware. Each subsystem has a
single processing unit and up to5 I/O channels (shown as bold
directed lines). The data is exchanged in the form of “packets”
between the environment and the processors at regular intervals
of time. The data rates are different for each channel.

The channelC is a bi-directional communication link between
the subsystems P1 and P2. However, for convenience, this
bi-directional channel has been logically split into two uni-
directional communication links,C1 and C2. P1 transmits
throughC1 and receives throughC2 while P2 receives through
C1 and transmits throughC2.

The explanations that follow are valid only after the processors
P1 and P2 have been initialised. It is assumed that the buffers
mentioned below can hold only one packet at a time.

Channels and Processors

The processor P1 uses all the 5 I/O channels viz.
A1, A2, A3, A4, and C (C1/C2), out of which 2 chan-
nels (A3 and A4) are used as dedicated input channels.A1,
A2, A3 andA4 are communication links between P1 and the
external environment whileC (C1/C2) is the common link
between the processors P1 and P2. The processor P2 uses only
4 I/O channels (B1, B2, B3, andC) out of which1 channel
(B3) is used as a dedicated input channel.B1, B2, andB3 are
communication links between P2 and the external environment.

The channelsA1 and A2: The data packets arriving
on these channels contain queries regarding the health status of
the processor P1.

Once P1 is initialised, it receives a data packet onAi from the

α
A1

for
of data

Time taken
processing

T T

Contents of

alongwith
out1

Buf sent

acknowledgment

Buf A1

Data is put
in the buffer

New
arrives

data New
arrives

data

Initialization
of the system

Delay
handling
interrupt

extractionInfo
over

A1

δ

in

τ A1

A1

time
No action

Figure 2. The Channel A1 of subsystem P1

external environment fori = 1, 2 . The interrupt handler forAi
transfers the data to bufferBufAi. The time taken for handling
the interrupt is at mostδ seconds which is the delay incurred due
to the processor handling other interrupt(s).

P1 extracts the information from the data packet received, checks
for presence of data in the bufferBufouti, and sends out
an acknowledgement along with the (non-empty) contents of
Bufouti. All these are done inτAi seconds such thatδ + τAi <
TAi where2 ∗ TAi is the periodicity of arrival of data onAi.

The subsystem P1 alternately receives from and transmits to the
external environment throughAi in the manner described above.
The behaviour of the channel A1 is depicted as the diagram in
Fig 2.

The channelsA3 and A4: The data packets received
on this dedicated input channelAi, i = 3, 4 of processor P1
contain informationIi. Once P1 is initialised, it receives a data
packet onAi from the external environment. The interrupt han-
dler for Ai transfers the data to bufferBufAi. The time taken
for handling the interrupt is at mostδ seconds which is the delay
incurred due to the processor handling other interrupt(s).

P1 extracts the information contained in the data packet received,
processes it, and puts the resultI ′i in the bufferBufP1. All these
are done inτAi seconds such thatδ + τAi < TAi whereTAi is
the periodicity of arrival of data onAi.

The channel C1 and C2 (C): These are uni-
directional communication channels through which Pi receives
data from and transmits data to Pj forj 6= i andi, j ∈ {1, 2}.
The data packets received by P1 on the channelC1 contain in-
formation,Iout (transmitted by P2 as contents of bufferBufP2).
The data packets received by P2 on the channelC2 are the pro-
cessed informationI ′1 or I ′2 (transmitted by P1 as contents of
bufferBufP1).

Once P1 is initialised, it receives a data packet onC1 from P2.

Once P2 is initialised, it transmits the contents of bufferBufP2

(which contains dummy data initially) to P1 through C1. The
information thus sent to P1 is to be forwarded to the external
environment by P1 later.

The interrupt handler forC1 transfers the data to bufferBufC1.
When the interrupt is raised due to the arrival of a data packet
from P1, the interrupt handler forC2 transfers the data to buffer
BufC2.

The time taken for handling the interrupt is at mostδ seconds
which is the delay incurred due to the processor handling other
interrupt(s).

The task associated with this channelCi is to extract the in-
formation contained in the data packet received, and store the
results of the computation in the bufferBufouti. This is done
in τCi seconds such thatδ + τCi < TPi whereTP1 + TP2 =
TC1 = TC2 is the periodicity of reception of data by Pi onCi.

The channelsB1 and B2: The data packets arriving
on these channels contain queries regarding the health status of
the processor P2. Once P2 is initialised, it receives a data packet
on Bi (i = 1, 2) from the external environment. The interrupt
handler forBi transfers the data to bufferBufBi. The time
taken for handling the interrupt is at mostδ seconds which is the
delay incurred due to the processor handling other interrupt(s).

P2 extracts the information from the data packet received and
sends out an acknowledgement. All these are done inτBi sec-
onds such thatδ + τBi < TBi where2 ∗ TBi is the periodicity
of arrival of data onBi.

The subsystem P2 alternately receives from and transmits to the
external environment throughBi in the manner described above.

The channelB3: The data packets received on this
dedicated input channel of processor P2 contain information,I3.

Once P2 is initialised, it receives a data packet on B3 from the
external environment. The interrupt handler for B3 transfers the
data to bufferBufB3. The time taken for handling the inter-
rupt is at mostδ seconds which is the delay incurred due to the
processor handling other interrupt(s).

P2 extracts the information,I3 from the contents of buffer
BufB3, processes it along with the contents ofBufout2 (which
contains the information extracted by P2 from the data arriving
on channel C2), and puts the result,Iout, in the bufferBufP2.
All these are done inτB3 seconds such thatδ + τB3 < TB3

whereTB3 is the periodicity of arrival of data on B3.

2. DURATION CALCULUS: A BRIEF SUMMARY

In this section, we give a brief summary of Duration Calculus
which will be used as the formalism to specify the IPS in this
paper. For more details, readers are referred to [4].

Time in DC is the setR+ of non-negative real numbers. For
t, t′ ∈ R+, t ≤ t′, [t, t′] denotes the time interval fromt to t′.

We assume a finite setE of Boolean variables called primitive
states.E includes the Boolean constants 0 and 1 denotingfalse
andtrue respectively. States, denoted byP, Q, P1, Q1, etc., con-
sist of Boolean expressions overE. A primitive stateP is inter-
preted as a functionI(P) : R+ → {0, 1}. I(P)(t) = 1 means
that stateP is present at time instantt, andI(P)(t) = 0 means
that stateP is not present at time instantt. We assume that a
state has finite variability in a finite time interval. A composite
state is interpreted as a function which is defined by the interpre-
tations for the primitive states and Boolean operators.

For an arbitrary stateP , its duration is denoted by
∫

P . Given
an interpretationI of states and an interval, duration

∫
P is in-

terpreted as the accumulated length of time within the interval at
which P is present. So for an arbitrary interval[t, t′], the inter-

pretationI(
∫

P)([t, t′]) is defined as
∫ t′

t
I(P)(t)dt. Therefore,∫

1 always gives the length of the intervals and is denoted by`.

The set of primitive duration terms consists of variables over the
setR+ of non-negative real numbers and durations of states. In

this paper, a duration term is defined either as a primitive term
or as a linear combination of primitive terms.

A primitive duration formula is an expression formed from terms
by using the usual relational operations on the reals, such as
equality = and inequality<. A duration formula is either a primi-
tive formula or an expression formed from formulas by using the
logical operators¬, ∧, ∨,⇒,⇔, and the chop ; (see below) and
quantifiers∀, ∃ applied to variables ranging overR+.

A duration formulaD is satisfied by an interpretationI in an in-
terval[t′, t′′] just when it evaluates to true for that interpretation
over that time interval. This is written as

I, [t′, t′′] |= D,

whereI assigns every primitive state a finitely variable function
from R+ to {0,1}, and[t′, t′′] decides the observation window.
So the satisfaction relation has nothing to do with the values of
the primitive state assigned byI outside the observation window
[t′, t′′]. That is, for interpretationsI andI ′, if

I(P)(t) = I ′(P)(t), t′ ≤ t ≤ t′′

holds for all primitive states inD, then we can prove

I, [t′, t′′] |= D iff I ′, [t′, t′′] |= D.

Given an interpretationI, the chop-formulaD1; D2 is true for
[t′, t′′] if there exists at such thatt′ ≤ t ≤ t′′ andD1 andD2

are true for[t′, t] and[t, t′′] respectively.

We give now shorthands for some duration formulas which are
often used. For an arbitrary stateP , ddP ee stands for(

∫
P =

`) ∧ (` > 0). This means thatP holds everywhere in a non-
point interval. We usedd ee to denote the predicate which is true
only for point intervals. Modalities3, 2 are defined as:3D =
true; D; true, 2D = ¬3¬D. This means that3D is true for
an interval iffD holds for some subinterval of it, and2D is true
for an interval iffD holds for all subintervals of it.

In this paper, we will use the following abbreviations as well.

3·D =̂ (D; true) 2·D =̂ ¬3· ¬D

3· D holds for an interval[a, b] if and only if D holds for some
prefix [a, c] (c ≤ b) of the interval, and2·D holds for an interval
if and only if D holds for any prefix of the interval.

DC has a set of axioms about states and rules which is sound
and (relatively) complete. The readers are referred to [4] for the
proof system of DC.

3. FORMAL SPECIFICATION

In order to write down a formal specification of the IPS, we seg-
regate thefixed properties and thetunable properties of the
IPS. The fixed properties refer to the inherent behaviour of the
system viz. the effects of the hardware components used. We
refer to thesehard features of the system as thebehavior of
the IPS. The tunable properties, as the name implies, refer to
the behaviour of the software which can betunedto meet the
requirements most effectively. Hence, the reference to the char-
acteristics of the software processes as the scheduling algorithm.
Therefore, it is expected that the behaviour of IPS that controlled
by the scheduler will meet therequirementsof the IPS.

Our purpose is to write the DC formulas

1. =env, to capture the behaviour of the IPS,

2. =req, to specify the requirements, and

3. =sch, to formalise the working of the scheduling algorithm

that are valid for any time interval of the form[0, t].

Specification of the Behaviour of IPS

The behaviour of the IPS is modelled by defining the states of its
subsystems, P1 and P2.

Definition of States: Let us define the setsChP1 =
{A1, A2, A3, A4, C1} andChP2 = {B1, B2, B3, C2}. For
each channeli ∈ Chm andm ∈ {P1, P2}, we introduce two
state variables viz.

1. intrm
i ∈ Time → {0, 1} to model the interrupt caused by

the arrival of new data on channeli in subsystemm. For
any timet, intrm

i (t) = 1 means that at timet an interrupt
has been raised by the arrival of data on channeli and the
processor (m) has been requested for servicing it, but the
data has not been captured into bufferBufm

i . Therefore, if
the data on channeli has arrived,intrm

i (t) = 0 means that
the interrupt on channeli has been serviced and the data
has been flushed intoBufm

i . It is to be noted thatBufm
i

can hold only one data packet at a time. Thus, when a new
data packet is flushed intoBufm

i , the old data packet is
overwritten.

2. procm
i ∈ T ime → {0, 1} to model the processing of the

contents of bufferBufm
i by the processorm. For any time

t, procm
i (t) = 1 means that the data inBufm

i is being
processed by the processor, andprocm

i (t) = 0 means that
the data inBufm

i is not being processed by the processor.
Note that the precessing of the data can be preempted (it is
the scheduler who decides the data in the buffer of which
channel is processed by the processor).

Definition of the Periodic Intervals: For any chan-
nel i of subsystemm, the periodic interval is the time interval
starting atαm

i +k∗T m
i and ending atαm

i +(k+1)∗T m
i , where

αm
i is the arrival time of the first data packet,k = 0, 1, 2, . . .,

andT m
i is the periodicity of arrival of data. Thus, a periodic in-

terval is a time interval between two consecutive arrivals of data
on a channel.

For any channeli of subsystemm, the interval[0, t] is always
expressed by

(` ≤ αm
i) ∨ (` = αm

i mod T m
i ; ` = T m

i)
∨ (` = αm

i mod T m
i ; 0 < ` < T m

i)
(1)

That is, for anyt either there is no arrival of data beforet, or else,
the suffix of the interval[0, t] from the last data arrival beforet
is a prefix of a periodic interval.

Properties of the IPS: A data packet on channel
i ∈ Chm ∧ m ∈ {P1, P2} raises an interrupt on processor
m at the beginning of the periodic intervalT m

i . After δ (where
0 ≤ δ < T m

i) time units, the processor completes the handling
of the interrupt by flushing the data packet into the bufferBufm

i .
Therefore, everykth periodic interval satisfies the constraint1 :

ddintrm
i ee ; dd¬ intrm

i ee (2)
1Note that when¬, 2, and3 occur in formulas, they have higher

precedence than the binary connectives and the modality;.

and since that it takes at mostδ time units to handle an interrupt,
every time interval satisfies the condition :

2 ddintrm
i ee ⇒ ` ≤ δ (3)

When a data packet arrives on channeli ∈ Chm of processor
m ∈ {P1, P2}, it can be processed only if it has been flushed
into the bufferBufm

i . So the processing ofBufm
i can take

place only after the interrupt caused by the data packet has been
handled by processorm. Therefore, for any time interval

2 ddintrm
i ee ⇒ dd¬ procm

i ee (4)

The processorm ∈ {P1, P2} handles the processing of the data
in the buffersBufm

i , i ∈ Chm with the help of the scheduler
implemented in the system. However, at a time, the processor
can process the data of at most one buffer. So, forj ∈ Chm ∧
j 6= i,

2 ddprocm
i ee ⇒ dd¬ procm

j ee (5)

It was mentioned earlier that P1 and P2 are identical systems,
and that channel C (referred to as C1 and C2 in the context) is the
common link between the two systems. It can be seen thatTC1

andTC2 are each equal toTP1 + TP2. Therefore,TC1 = TC2.
From the description, it is evident thatαC2 = αC1 + TP1. This
being a property of the IPS, we have

(TC1 = TC2) ∧ (αC2 = αC1 + TP1) (6)

Combining the properties of the IPS, we get the specification of
the behaviour of IPS during the time interval[0, t] as in Fig. 3.

Specification of the Requirements of IPS

Let

Bi chP1 = {A1, A2}, Bi chP2 = {B1, B2}
Uni chP1 = {A3, A4}, Uni chP2 = {B3}
Int chP1 = {C1}, Int chP2 = {C2}

denote the bi-directional, uni-directional, and inter-link channels
of the subsystems P1 and P2.

As described earlier, there is a task associated with each channel
in a subsystem. The execution of the task should be completed
before the next data packet arrives on the associated channel.
In other words, the execution of the task should be completed
within the periodic interval associated with the channel. The
periodic interval has already been defined in Section 1.

For the bi-directional channels, the processing of data should
be completed before half the duration of the periodic interval
T m

i is over. This means that every periodic interval of channel
i ∈ Bi chm ∧m ∈ {P1, P2} should satisfy

∫
procm

i = τm
i ; ` = 0.5 ∗ T m

i (8)

For the uni-directional channeli ∈ Uni chm ∧m ∈ {P1, P2},
every periodic interval should satisfy

∫
procm

i = τm
i (9)

For the inter-link channeli ∈ Int chm ∧m ∈ {P1, P2}, every
periodic interval should satisfy

∫
procm

i = τm
i ; ` = T m

i − Tm (10)

By putting together the requirement for the periodic intervals for
different channels (8),(9),(10) and taking into account the repre-
sentation of the intervals of the form[0, t] via periodic intervals
(1), we get the specifications of the requirements to be met by
the IPS for the time interval[0, t] as in Figure 4

Specification of the Scheduler in the IPS

The IPS is a hard real-time system integrating two independent
subsystems whose behaviour and requirements have been speci-
fied in the earlier sections. The existence of an EDF scheduler as
an integral part of the operating system within each subsystem
is also assumed. Each subsystem has a single processing unit
for carrying out the task of processing the data arriving on its
multiple I/O channels. The periodicity of arrival of data pack-
ets, the computation time required for processing the data in the
buffer, and the deadline for completion of the computation task
vary with each channel within a subsystem.

Consider channeli of processorm. A data packet arrives at time
αm

i + k ∗ T m
i time units wherek = 0, 1, 2, It takes at most

δ time units for the newly arrived data to be flushed into buffer
Bufm

i . So, in the worst case, the task becomes ready only after
αm

i + k ∗ T m
i + δ time units. Therefore, in the worst case, the

periodic interval for the task starts fromαm
i + k ∗ T m

i + δ and
ends atαm

i + (k + 1) ∗ T m
i + δ time units.

After a task becomes ready, it requires a computation time of
τm

i time units to process the data inBufm
i . The accumulated

run time of the task should not exceed its deadlineDm
i which is

less than its periodT m
i . The deadline for a task varies with the

channel associated with the task as:

for i ∈ Bi chm, m ∈ {P1, P2} Dm
i = 0.5 ∗ T m

i (12)

for i ∈ Uni chm, m ∈ {P1, P2} Dm
i = T m

i (13)

for i ∈ Int chm, m ∈ {P1, P2} Dm
i = Tm (14)

The Scheduling Policy:The tasks to be scheduled of
course should satisfy

τm
i ≤ Dm

i ≤ T m
i − δ (15)

and also by an offset ofαm
i + δ. Leung and Whitehead [5] have

defined a deadline monotonic priority assignment that caters for
tasks with the time constraint (15). Using the results of Leung
and Whitehead, Audsley [2] established schedulability tests for
periodic tasks with multiple release times.

The tasks are executed in a preemptive manner: at any in-
stant, the task which has the nearest deadline for completion of
its computation is allocated processor time. In literature, this
scheduling mechanism is referred to as the earliest deadline first
(EDF) scheduler.

Audsley’s tests guarantee the deadlines of periodic tasks which
satisfy the timing constraint (15).

For a given set of tasks, (i ∈) Chm in a processing unitm, the
deadline monotonic scheduling is feasible if and only if

∑
i

τm
i +

∑
j∧Dm

j
≤Dm

i
∧j 6=i

d Dm
i

T m
j
e ∗ τm

j

Dm
i

≤ 1 (16)

=env =

∧
i ∈ Chm,

m ∈ {P1, P2}




(2 ddintrm
i ee ⇒ ` ≤ δ)∧

(2 ddintrm
i ee ⇒ dd¬ procm

i ee)∧
((j ∈ Chm ∧ j 6= i) ⇒ (2 ddprocm

i ee ⇒ dd¬ procm
j ee))∧



(` ≤ αm
i)∨

(` = αm
i mod Tm

i ;




` = Tm
i

∧
ddintrm

i ee ; dd¬ intrm
i ee


)∨

(` = αm
i mod Tm

i ;




0 < ` < Tm
i

∧
ddintrm

i ee ; (dd¬ intrm
i ee ∨ d e)


)







∧
(TP1

C1 = TP2
C2) ∧ (αC2 = αC1 + TP1)

(7)

Figure 3. Specification of the properties of the IPS

=req =

∧
i∈Bi chm∧m∈{P1,P2}




(` ≤ αm
i)∨

(` = αm
i mod Tm

i ;
(

(` = Tm
i)∧

(
∫

procm
i = τm

i ; ` = 0.5 ∗ Tm
i)

)
)∨

(` = αm
i mod Tm

i ;




(
(0.5 ∗ Tm

i ≤ l < Tm
i)∧

(
∫

procm
i = τm

i ; ` ≥ 0)

)

∨(
(0 < ` < 0.5 ∗ Tm

i)∧
(
∫

procm
i ≤ τm

i)

)




)




∧

∧
i∈Uni chm∧m∈{P1,P2}




` ≤ αm
i ∨

(` = αm
i mod Tm

i ;
(

` = Tm
i ∧

(
∫

procm
i = τm

i)

)
)∨

(` = αm
i mod Tm

i ;
(

0 < ` < Tm
i ∧∫

procm
i ≤ τm

i

)
)




∧

∧
i ∈ Int chm

∧m ∈ {P1, P2}




` ≤ αm
i ∨

(` = αm
i mod Tm

i ;
(

` = Tm
i ∧

(
∫

procm
i = τm

i ; ` = Tm
i − Tm)

)
)∨

(` = αm
i mod Tm

i ;




(
Tm ≤ l < Tm

i ∧
(
∫

procm
i = τm

i ; ` ≥ 0)

)

∨(
0 < ` < Tm∧∫
procm

i ≤ τm
i

)




)




(11)

Figure 4. Specification of the requirements of IPS

τm
i , Dm

i , andT m
i are reasonably assumed to be integral multi-

ples of machine cycles.

Properties of the EDF Scheduler: To aid the for-
mal verification of the IPS, the behaviour of the scheduler is de-
scribed in DC which enables us to abstract the accumulated run
time of tasks. The main strategy of the EDF scheduler is that in
any time interval, one of the most urgent tasks (i.e. one with the
nearest deadline) will occupy the processor. Less urgent ones
should be kept waiting or be preempted by more urgent ones.

At time t, the length of time elapsed is̀= αm
i + n ∗ T m

i + θm
i

where0 ≤ θm
i < T m

i andn = 0, 1, 2, The remaining time,
rem timem

i , with regard to the currently approaching deadline
depends on the value ofθm

i and is computed as follows:

rem timem
i = Dm

i − θm
i if 0 ≤ θm

i < Dm
i or

rem timem
i = Dm

i + T m
i − θm

i if Dm
i ≤ θm

i < T m
i

So, for any two tasksprocm
i and procm

j wherei, j ∈ Chm ∧
i 6= j ∧ m ∈ {P1, P2}, if rem timem

i < rem timem
j ,

thenprocm
i is more urgent thanprocm

j becauset is closer to
the deadline ofprocm

i than the deadline ofprocm
j . This fact is

represented by the DC formulaUrgm(i, j) which holds for the
interval[0, t] iff at time t procm

i is more urgentthanprocm
j ,

Urgm(i, j)=̂
(⌊

l−αi−Di
Ti

⌋
+ 1

)
∗ Ti + αi + Di <(⌊

l−αj−Dj

Tj

⌋
+ 1

)
∗ Tj + αj + Dj

In order to express thatprocm
i has not been finished at timet,

we introduce a DC formulaunderm
i ,

underm
i =̂ ` ≤ αi∨

(` = αi mod T m
i ;

(
` ≤ T m

i ∧∫
procm

i < τm
j))

)
.

So, if underm
i holds for the interval[0, t], the processing of the

last arrived data packet at channeli has not finished at timet.

Supposeprocm
i is currently running on processorm, then

procm
i must be themost urgentamong all the other incomplete

tasks on processorm before it is selected to run. In other words,
at no time during the run can there be an incident ofprocm

i be-
ing selected to run when another task has been found to be the
most urgent. This is expressed as

∧
j∈Chm

¬3·
(
(Urgm(j, i) ; ddprocm

i ee) ∧ underm
j

)
(17)

Assuming there is no overhead in the scheduling, an incomplete
task implies that the processor is busy running some task and is
not idle.

2· underm
i ⇒

∨
j∈Chm

true; ddprocm
j ee (18)

Combining equation (17) and equation (18) for all the tasks in a
processor, we get the specification of the EDF scheduler as

=sch =
∧

i ∈ Chm∧
m ∈ {P1, P2}

A(i, m) (19)

where

A(i, m) =


∧
j∈Chm

¬3·
(

(Urgm(j, i); ddprocm
i ee)

∧ underm
j

)

∧
2· underm

i ⇒ ∨
j∈Chm

(true; ddprocm
j ee)




Formal Verification

If the specification of the behaviour of the IPS and that of the
scheduler in the IPS hold in any time interval[0, t], and the suf-
ficient condition 16 is satisfied, then the requirements is met:

Theorem 1 It is proved that

`




=env ∧ =sch∧
∑

i

τm
i +

∑
j∧Dm

j
≤Dm

i
∧j 6=i

d Dm
i

T m
j
e∗τm

j

Dm
i

≤ 1


 ⇒ =req

The formal proof of the theorem using the proof system of Du-
ration Calculus is similar to that of Liu Layland’s theorem in [7],
and is not presented here.

4. CONCLUSION

This paper sets out the formal specifications of the inherent be-
haviour of the IPS, the properties of the EDF scheduler, and the
requirements of the implementation of the IPS that was taken up
for as a case study in DC. By formalising the system that the first
author was involved in the design, we have a clear understand-
ing its implementation. Besides, we are able to verify the system
formally. The next step of our work will be the formal proof of
the correctness of the system using DC proof assistant in PVS.

References

[1] N. Audsley, A. Burns,Real-Time System Scheduling, Tech-
nical Report YCS 134, University of York, UK.

[2] Neil C. Audsley,Deadline Monotonic Scheduling, Techni-
cal Report YCS 146, University of York, UK, 9/90.

[3] Philip Chan, Dang Van Hung,Duration Calculus Spec-
ification of Scheduling for Tasks with Shared Resources,
LNCS 1023, Springer-Verlag 1995, pp. 365–380.

[4] Michael R. Hansen, Zhou Chaochen,Duration Calculus:
Logical Foundations, Formal Aspects of Computing, 9(3):
283-330, 1997.

[5] J. Leung, J. Whitehead,On the Complexity of Fixed Prior-
ity Scheduling of Real-Time Tasks, Performance Evaluation
2(4): 237-250, 1982.

[6] Zhiming Liu, Mathai Joseph, Tomasz Janowski,Verifica-
tion of Schedulability for Real-Time Programs, Formal As-
pects of Computing, 7(5): 510-532, 1995

[7] Zheng Yuhua, Zhou Chaochen,A Formal Proof of the
Deadline Driven Scheduler, Formal Techniques in Real-
Time and Fault-Tolerant Systems, LNCS 863, pp. 756-775,
Springer-Verlag, 1994.

