
Toward a Formal Model for Component Interfaces
for Real-time Systems

Dang Van Hung
United Nations University

International Institute for Software Technology
P. O. Box 3058, Macau

dvh@iist.unu.edu

ABSTRACT
We give a model of component interface for real-time compo-
nent based systems. We extend the specification of a method
with a time constraint which is a relation between the re-
source availability and the amount of time spent to perform
the method. We define a contract to include method spec-
ification, and define a component as an implementation of
a contract. This implementation may require services from
other components with some assumptions about the sched-
ule for the use of shared methods and resources with the
presence of concurrency. Our model supports the separation
between functional and non-functional requirements, and
the formal compositional verification of component-based
real-time systems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Programming by contract, Formal methods

General Terms
Theory

Keywords
Component-based systems, real-time constraints, extended
duration calculus, unifying theory of programming

1. INTRODUCTION
Reusability is one of the advantages of component based

development methods. However, when adding time features
to the specification of a component, the reusability of the
component is reduced if they are not flexible. This is typ-
ically true for real-time embedded systems, where compo-
nents are based on specific hardware. If the timing spec-
ification of a component is fixed for that hardware, then

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FMICS’05,September 5–6, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-59593-148-1/05/0009 ...$5.00.

the component cannot be used for different hardware. Fur-
thermore, the real-time requirement of a component based
system in general is achieved not only by the individual com-
ponents but also by their interactions. In order to increase
the flexibility for the timing specification of a component, we
specify the timing of each of its methods as a relation of the
time to carry out the method and the resources provided
to the component. The implementation of a method may
depend on services from other components which may be
mutually exclusive with the presence of concurrency. There-
fore, to guarantee its real-time services, a component needs
an assumption about the real-time behaviour of the inter-
action of components in the system as well as the schedule
for services of the system. To capture these kind of assump-
tions we introduce a schedule invariance to the specification
of the component interface. Then, the component can pro-
vide correct service only if this invariance is satisfied. In the
literature, there are a lot of work on the component inter-
faces, but not many of them take into account the timing
specifications to our knowledge.

In this paper, we propose a model for component systems
based on this idea using the notations from the Unifying
Theory of Programming. With the flexible real-time spec-
ification for methods, with the assumption for the compo-
nent interaction as schedule invariance interface, our model
supports the formal compositional verification and facili-
tates the schedulability analysis of component-based real-
time systems. The formal verification for industrial safety
critical applications plays an important role, but is very dif-
ficult to perform even with the assistance from tools. There-
fore, the compositionality will help to reduced the complex-
ity for that hard works, and encourages to carry out the
formal verification.

The paper is organised as follows. In the next section,
we present our formal model for real-time component inter-
faces and components. After that, in Section 3 we propose
a formal semantics of concurrent threads in the active com-
ponents. The last section is the conclusion of our paper.

2. A FORMALISM FOR COMPONENT
INTERFACE SPECIFICATIONS

A component provides services to its clients. The services
could be either data or methods. To specify timing features
of a method in a flexible way, we assume a fixed set of integer
variables RES = {res1, . . . , resn}. The variable resi indi-
cates a resource type, and its value represents the amount
of resources of the type assigned to a component. A method

will have a resource specification to specify the resource re-
quirements for its implementation, which will be a predicate
over the integer variables in RES. A method will need some
time to perform, and this amount of time depends on the
type and number of available resources. We introduce a
temporal variable ` to represent the amount of time spent
performing a method. The value of ` for a method should
satisfy some condition when the execution of the method ter-
minates. This condition is represented as a predicate over
the variable `, the resource variables and the input variables
for the method.

Definition 1 (Interface).
An interface I = 〈Fd, Md〉 consists of

• Fd - a feature declaration which is a set of variables,

• Md - a method declaration which is a set of methods;
each method m ∈ Md is of the form op(in, out), where
in and out are sets of variables.

A method in an interface is specified by a so-called “timed
design” 〈α, FP, FR〉, where α denotes the set of (program)
variables used by the method, FP denotes the functionality
specification, and FR denotes the non-functionality specifi-
cation of the method. We follow the style in [6] to represent
FP and FR (as in the unifying theory of programming by
He and Hoare [5]):

• FP is a predicate of the form

(p `f R) b= (ok ∧ p) ⇒ (ok′ ∧R)

where p is the precondition of the method which is the
assumption on the initial value of variables in α \ out
that the method can rely on when activated, and R
is the post condition relating the initial observations
to the final observations (represented by the primed
variables in the set {x′|x ∈ α\(in∪out)} and variables
in out). The Boolean variable ok is a special variable
denoting the termination of the method, i.e. ok is true
iff the method starts, and ok′ is true iff the method
terminates. We use the index f in `f to distinguish it
with `n, where f stands for functional and n stands
for non-functional. We borrow the notation b= from
the B method for the definition of a name.

• FR is a predicate of the form

q `n S b= q ⇒ S

where q is the resource precondition for the method
in the given interface which is the assumption on the
resources used by the method, and is represented as
a predicate on the variables in RES, and S is the
timed post condition for the method which relates the
amount of time ` spent for performing the method and
the resources used for the method. S is represented as
a predicate on the variables in RES, α and `.

The definition of FP in a timed design 〈α, FP, FR〉 is
exactly the same as in the Unifying Theory of Programming.
We give an example to illustrate the meanings for FR. Let
α b= {x, y}, FP b= x ≥ 0 `f y2 = x and FR b= P133 +
P266 = 1 `r ((P133 = 1 ⇒ ` ≤ 0.001) ∧ (P133 = 0 ⇒
` ≤ 0.0005)). Then 〈α, FP, FR〉 represents a timed design
to compute y =

√
x for a non negative x in which it takes no

more than 0.001 time units when performed by a 133Mhz
processor, and it takes no more than 0.0005 time units when
performed by a 266Mhz processor.
Refinement of timed designs

The definition of the refinement relation for the timed
designs is just a small extension of the one for the designs
as presented in UTP and also in [6]. A timed design D1 =
〈α, FP1, FR1〉 is refined by a design D2 = 〈α, FP2, FR2〉
(denoted by D1 v D2) iff

(∀ok, ok′, v, v′ • FP2 ⇒ FP1) ∧ (∀r, ` • FR2 ⇒ FR1)

where v, v′ are vectors of the program variables, and r de-
notes a vector of the resource variables, r = (res1, . . . , resn).
The first part of the conjunction is to say that the functional
part of D2 is a refinement of the the functional part of D1 as
in [6]. The second part of the conjunction simply says that
if the non-functional requirement of D2 is satisfied then the
non-functional requirement of D1 is also satisfied. Hence,
D2 can implement D1.
Sequential Composition

Let D1 = 〈α, FP1, FR1〉 and D2 = 〈α, FP2, FR2〉 be
timed designs. Then

D1; D2 b= 〈α, FP, FR〉,
where:

• Let FP1 = FP1(v
′) and FP2 = FP2(v).

Then FP b= ∃m • FP1(m) ∧ FP2(m).

• FR b= ∃`1, `2 • (FR1[`1/`] ∧ FR2[`2/`] ∧ ` = `1 + `2)

Here and later, we use F [x1/x] to denote the expression
resulting from the substitution of x1 for x in the expression
F . Note that we assume in this paper that all the resources
are not consumable. Hence the same resources used for D1

can be reused for D2 when D1 has terminated.
Disjoint Parallel Composition

Let D1 = 〈α1, FP1, FR1〉 and D2 = 〈α2, FP2, FR2〉 be
timed designs. Assume that α1 ∩ α2 = ∅. Then

D1||D2 b= 〈α, FP, FR〉,
where:

• α b= α1 ∪ α2, FP b= FP1 ∧ FP2

• FR b= ∃`1, `2, r1, r2•(FR1[`1/`, r1/r]∧FR2[`2/`, r2/r]∧
` = max{`1, `2} ∧ r = r1 + r2, where r1 and r2 are
vectors of resource variables, and r1 + r2 are defined
componentwise.

The condition r = r1 + r2 expresses that the number of
resources are enough for performing D1 and D2 in parallel
independently. The composed command terminates when
both component commands terminate. To justify these two
definitions, we can use the operational semantics for the
programs defined as a labeled transition system (S,−→, C),
where each state s ∈ S is a tuple (v, r, t), v is a vector of
values of program variables, r is a vector of values of resource
variables, and t is a real number to indicate the real-time.
C is the set of commands. Let the semantics of c ∈ C be
design 〈α, FP, FR〉, where FP = p `f R and FR = pr `n S.

Then, there is a transition (v, r, t)
c−→ (v′, r′, t′) iff p(v) ∧

R(v, v′)∧r = r′∧pr(r)∧` = t′−t∧S(`, r, v, v′) according to
the interpretation of designs. Defining the disjoint parallel
composition and sequential composition in the obvious way

in the label transition system coincides with the definition
given above. It is obvious that like for untimed designs:

Theorem 1. The relation v is a partial order relation on
the set of timed designs, and the disjoint parallel composition
and the sequential composition are monotone according to
this relation.

Definition 2 (Timed Contract). A timed contract is
a tuple 〈I, Rd, MSpec, Init, Inv〉, where

• I = 〈Fd, Md〉 is an interface

• Rd - a resource declaration, which is a subset of RES,

• Init is an initialization, which associates each variable
in Fd and each local variable with a value of the same
type, a variable in Rd with an integer,

• MSpec is method specification which associates each
method op(in, out) in Md with a timed design
〈α, FP, PR〉, where (α \ (in ∪ out)) ⊆ Fd, and

• Inv is a predicate on the features in the contract (called
contract invariance). Inv represents an invariant prop-
erty of the value of the variables in the feature decla-
ration Fd that can be relied on at any time that it is
accessible from outside. Hence, Inv is satisfied partic-
ularly by Init.

We want to emphasise here that the resource variables
declared in Rd in a contract are internal (local) in the con-
tract (and in the components - see below - that implement
the contract). Inv in a contract expresses a property of the
variables of the contract that it offers to the environment. In
case the contract cannot guarantee any invariant property
of its variables, Inv is true.

Definition 3 (Refinement of Contracts).
Timed contract

Ctr1 = 〈〈Fd1, Md1〉, Rd1, MSpec1, Init1, Inv1〉
is refined by timed contract

Ctr2 = 〈〈Fd2, Md2〉, Rd2, MSpec2, Init2, Inv2〉,
(denoted Ctr1 v Ctr2) iff:

• Fd1 ⊆ Fd2, Rd1 ⊆ Rd2, and Init2|Fd1 = Init1|Fd1 ,
Init2|Rd1 ≤ Init1|Rd1 (where for functions f, f1, f2

and a set A, f |A denotes the restriction of f on A,
and f1 ≤ f2 denotes that f1 and f2 have the same
domain and f1(x) ≤ f2(x) for all x in their domain),

• Md1 ⊆ Md2,

• For all methods op declared in Md1

Mspec1(op) v Mspec2(op), and Inv2 ⇒ Inv1.

We justify this definition as follows. Ctr2 provide all ser-
vices that Ctr1 does, but may provide more. Ctr2 should
have at least the same resources as Ctr1 does. The condi-
tion Inv2 ⇒ Inv1 says that the property of variables guar-
anteed by Ctr1 is ensured by Ctr2. Hence we can use Ctr2

to replace Ctr1 without losing any services.

Let Ctri = 〈Fdi, Mdi, Rdi, Mspeci, Initi〉, i = 1, 2 be
timed contracts which have the compatible sets of features
and methods, i.e. f ∈ Fd1∩Fd2 implies Init1(f) = Init2(f)
and op ∈ Md1 ∩Md2 implies MSpec1(op) ⇔ MSpec2(op).
The combination Ctr1 ∪ Ctr2 is defined as:

Ctr1 ∪ Ctr2 = 〈(Fd1 ∪ Fd2, Md1 ∪Md2), Rd1 ∪Rd2,
Mspec1 ∪Mspec2,
Init1] Init2, Inv1 ∧ Inv2〉,

where (Init1] Init2)(x) is defined to be
8
>><
>>:

max{Init1(x), Init2(x)}
if x ∈ dom(Init1) ∩ dom(Init2)

Init1(x) if x ∈ dom(Init1) \ dom(Init2)
Init2(x) if x ∈ dom(Init2) \ dom(Init1)

When Ctr1∪Ctr2 is defined, we say that Ctr1 and Ctr2 are
composable. Note that when combining two contracts, the
amount of resources available for the combined one is defined
as the maximal of the component contracts. This definition
reflects our view that a method in the combined contract
have at least the same time performance as it has in the com-
ponent contracts, provided the following well-formedness is
satisfied. The well-formedness means that a better timed
performance is achieved if more resources are provided, and
is formalised as:

A timed design 〈α, FP, FR〉 is said to be well-formed iff
FR satisfies

∀r, r1 • (r ≥ r1 ⇒ (FR[r/RES] ⇒ FR[r1/RES])),

where r and r1 are vectors of values of resource variables
(recall that RES is the vector of resource variables, and FR
is a relation on RES, ` and α). For the definition of the
refinement of timed contracts to be meaningful, we assume
that all the timed designs for the specification of contracts
are well-formed.

Theorem 2. Let Ctr1, Ctr2 be composable timed con-
tracts in which the specification of all methods are well-
formed. Then Ctri v Ctr1 ∪ Ctr2 for i = 1, 2.

Proof. By direct check from the well-formedness of the
specifications for methods and the definition of the timed
design refinement.

Now we want to formalise the concept of component. In-
tuitively, a passive component is an implementation of a con-
tract using services from other passive components via their
contract. For the simplicity of presentation, we do not in-
troduce the concept of private methods and private features,
and use the simple architectural style with the client/server
initiative, and synchronous communication. Our model can
be extended to the general case easily. Recall that we are
dealing with real-time methods. The implementation of a
method may invoke other methods in other components.
The invocation of methods in other component may need
some extra time for handling the concurrent use of the meth-
ods. This is because that when there are concurrent calls to
a method, the system needs a scheduler to schedule the uses
of the method, which may force a call to wait. We assume
that there is a scheduler in the system. This scheduler may
be centralized or distributed. We try to incoporate only the
needed information about the scheduler into components by
using a schedule invariance Sinv. As with the set of resource
names, we fix a set of global variables Π that are used by

the scheduler. Each v ∈ Π may correspond to a call from
a component C for a service from a component Q. The
scheduler uses the variables in Π to schedule for calls from
components based on the schedule invariant Sinv. We also
introduce a set Dep of component names in the declaration
of a component Comp. Dep is a finite set of components
that Comp depends on. The idea is that when the imple-
mentation of a method op in Comp has a call to a method in
a component C then this call should be sent to the scheduler
for scheduling. The scheduler bases on the current requests
to resolve any conflict and may force some calls to wait a
certain amount of time.

Definition 4 (Passive Components). A real-time pas-
sive component is a tuple
Comp = 〈Ctr, Dep, SDep, Mcode, SInv〉,
where Comp is identified with the name of the component,
consisting of

• a contract Ctr = 〈〈Fd, Md〉, Rd, Mspec, Init, Inv〉.
• a set Dep of component names, each element of Dep

is the name of other components that Comp depends
on.

• SDep is the set of variables in Π (representing the in-
teraction with the scheduler).

• SInv is a predicate on the variables v ∈ SDep (to ex-
press the assumption about information that the sched-
uler can rely on when a method in Comp is called).

• Mcode assigns to each method op in Md a design built
from basic operators (as well understood or defined in
[7] with a suitable time consumption assumption as
time and resource specification) and the method calls of
the form call(Comp, C, op1), where op1 is a method in
a component C in Dep (see below). Note that method
names, resource variables and local variables used in
the specification and implementation of a method
op1(in, out) in a passive component C (with the name
C) are local in C, and are prefixed by “C.” to avoid
the confusion with the variables used in other passive
components. Let Env denote the predicate

∧U∈Dep(Inv(Ctr(U)) ∧ SInv(U))

(here and below we use Ctr(U) to denote the contract
of component U , Inv(Ctr(U)) to denote the invari-
ant of the contract of component U , Dep(U) to denote
the set of component names that U depends on, and
SInv(U) to denote the system schedule invariant of
component U). The following condition should be sat-
isfied by Mcode: Env |= (Mspec(op) v Mcode(op)),
and Inv is preserved by any operation used in Mcode.

Let C ∈ Dep, and op ∈ C. Then call(Comp, C, op) is
defined as Schedule(Comp, C)||C.op, where
Schedule(Comp, C) is a design using variables in
SDep(C) (the value of these variables represent the
current calls to a method in C; we expect that the pre-
condition of Schedule(Comp, C) is implied by
SInv(C)). From the disjoint parallel rule,
Schedule(Comp, C)||C.op implies the functional spec-
ification of C.op, but may need more time to perform.

Contract Ctr is said to be implemented by Comp.

In the definition of component Comp, it requires that
Mspec(op) v Mcode(op) for every method op in the con-
tract of Comp under the assumption
∧U∈Dep(Inv(Ctr(U))∧SInv(U)). In words, this means that
provided that all the components that Comp depends on
ensure their invariants, any method of component Comp is
implemented correctly. Also, we require that any operation
in Comp should ensure the invariants of Comp. Therefore,
op can be used as a proper service with the specification
Mspec(op). How to make sure that ∧U∈Dep(Inv(Ctr(U))∧
SInv(U)) is guaranteed? The implementation of op relies
on the methods in the components with names in Dep. But
the implementation of those methods may eventually rely
on op. This situation may cause circular reasoning, and
may cause op to be implemented incorrectly. This situation
will not happen if we have the well-implementedness for the
methods defined as follows.

Definition 5. Well-implemented methods are defined re-
cursively as

1. if op is a method in a component with the code
Mcode(op) composed from the basic commands, then
op is well-implemented

2. if op is a method in a component with the code
Mcode(op) composed from the basic commands and
method-calls for a well-implemented method, then op
is well-implemented.

So, well-implemented methods do not contain recursive
method calls, although methods which contain recursive
method calls may always terminate and have well-defined
semantics.

Let Comp = 〈Ctr, Dep, SDep, Mcode, SInv〉. Let Dep
be a binary relation defined as

Dep b= {(C1, C2)|C2 ∈ Dep(C1)}
(i.e. C1 DepC2 iff the implementation of a method in C1

contains a call to a method in C2). Let Dep+ and Dep∗ be
the transitive closure and the reflexive and transitive closure
of Dep respectively.

By repeatedly replacing a method name by its implemen-
tation, we have:

Theorem 3. Let Comp = 〈Ctr, Dep, SDep, Mcode, SInv〉,
and let op be a well-implemented method of Comp. Then,
there is a program text P without occurrences of method calls
such that

V
C∈Dep+(Comp) Inv(C) |= Mspec(op) v P .

Combination of Components
Let Ci = 〈Ctri, Depi, SDepi, Mcodei, Invi〉, i = 1, 2 be

passive components which have the composable contracts,
and satisfy that Mcode1(op) ≡ Mcode2(op) for all op ∈
Md1 ∩Md2. The combination C1 ∪C2 is defined as 〈Ctr1 ∪
Ctr2, Dep1∪Dep2, SDep1∪SDep2, Mcode1∪Mcode2, SInv1∧
SInv2〉.

Let U be a finite set of passive components such thatS
U∈U U.Dep ⊆ U (recall that U .Dep is the set of com-

ponents that component U depends on). Let dependency
graph of U be defined as the directed graph D(U) b= (U ,A),
where (U, V) ∈ A iff V ∈ U.Dep. U is well structured iff its
dependency graph has no cycle. A passive component U is
said to be self-contained iff U.Dep = ∅.

Theorem 4. If U is well-structured, any method in a
component U ∈ U is well-implemented.

Remark

• The methods in components are defined as designs
with preconditions, post conditions and relations on
the amount of time to execute the methods and the re-
source availability. This is suitable for specifying the
termination systems, but is not powerful enough to
express the behaviour of nonterminating programs or
reactive systems.

• The definition of a component Comp requires that
Mspec(op) v Mcode(op) under the assumption

^
U∈Dep

(Inv(Ctr(U)) ∧ SInv(U)).

The condition Inv(Ctr(U)) is on the variables used
to implement the functionality specification for the
method op, and is guaranteed by all components U .
The condition SInv(U) is on the variables in SDep(U)
used by the scheduler only, and is used to implement
the non-functional specification of the method. There-
fore if SInv(U) is verified as a global invariant for
the corresponding untimed system (which has more
untimed behaviours than the timed system), it must
be an invariant of the timed system as well. The
verification of the invariant SInv(U) for the corre-
sponding untimed system can be done with classical
techniques. For example, when scheduling is unneces-
sary (e.g. the parallel usages of services are allowed,
or services are called by only one component at a
time, SDep(U) = ∅ for all U), then, and we can have
Schedule(Comp, C) = 〈∅, skip, ` = 0〉 (later we will as-
sume that computations always take time, hence, the
time specification for the scheduler in this case should
be changed to ` > 0 ∧ ` ≤ d where d is the smallest
amount of time needed to perform a command un-
der the assumption about resources in the system).
The precondition for Schedule(Comp, C) is true, and
hence SInv(C) can be true, which is a trivial invariant.
As another example, assume that the scheduler uses
the ’first in first service’ (FIFO) policy, and the max-
imal amount of time that a component uses a service
of component Comp each time is a, and that at most
n other components may use services of Comp. Then
we can have Schedule(Comp) = 〈SDep(U), FP, ` ≤
n× a〉. We leave FP unspecified here. Whether there
are concurrent calls to a component or not depends on
if there are concurrent active methods in the system.
The latter depends on if the language allows a method
to be implemented with parallel commands or if there
are more than one thread running in parallel in the
system. We will discuss more about this aspect later.

From the discussion in the remark, it is reasonable to
define that a component comp1 is refined by a component
Comp2 if and only if Comp2 is better than Comp1 in the
sense that Comp2 provides more services than Comp1, but
needs less services than Comp1, and the schedule condition
needed in Comp2 is looser than in Comp1 (i.e. Comp2 has
stronger invariants for the scheduler, hence the scheduler
working for comp1 should work for Comp2).

Definition 6 (Refinement of Components). Let
Compi = 〈Ctri, Depi, SDepi, Mcodei, SInvi〉, i = 1, 2
be passive components. Comp1 is said to be refined by Comp2

(denoted by Comp1 v Comp2) iff

• Ctr1 v Ctr2 (Comp2 provides more services than
Comp1)

• Dep2 ⊆ Dep1, SDep2 ⊆ SDep1 and SInv1 ⇒ SInv2

(Comp2 does not need more services from the system
than Comp1, and need weaker assumption about the
system scheduling)

Active Components
Active components are defined in the same way as pas-

sive components, except that the active components should
have concurrent thread declarations and event declarations.
Active components are driven by either events from the en-
vironment or by their internal clocks. A thread T is defined
as always D follows e, where e is an event which is a
boolean expression, and D is a method. The meaning of the
notation “D follows e” is e ⇒ ok ∧D. Roughly speaking,
thread T is listening for the occurrences of event e; whenever
event e occurs, method D should be invoked. The formal
meaning of the operator always will be given in the next
section using a real-time temporal logic.

Definition 7. A component based system is a set S of
components such that for any active component U ∈ S, for
any V such that U Dep∗ V , V ∈ S holds.

In a component based system, we can replace a passive
component by a better component without any violation of
the requirements.

Theorem 5. Let S be a component based system. Let
Comp1 and Comp2 be passive components such that Comp1 v
Comp2, and let Comp1 ∈ S. Let S1 be obtained from S by
replacing Comp1 by Comp2 and replacing each occurrence
of the name Comp1 in components in S by an occurrence
of the name Comp2. Then S1 is also a component based
system, and provides more services than S.

Proof. The only thing we need to prove is that after
the replacement of the occurrences of the name Comp1 by
the occurrences of the name Comp2, the resulting system is
also a set of components, i.e. we have to show that for any
method op in a contract of a resulting component C,

Mspec(op) v Mcode(op)

under the assumption

∧U∈Dep(C)(Inv(Ctr(U)) ∧ SInv(U)).

From Definition 6, it follows that

Schedule(Comp, Comp1)||Comp1.op v
Schedule(Comp, Comp2)||Comp2.op

for any method op in Comp1. Hence, from the monotonicity
of operations in the used programming language according
to the refinement relation, and from the fact that

SInv(Comp2) ⇒ SInv(Comp1)

we have that

Mspec(op) v Mcode(op)

GPS

mode()
on_off()

RouteDB

get_map()
find_route()

on_off()

Controller

find_route_handler()
get_pos()

Figure 1: A Component Diagram for CNS.

holds under the assumption
^

U∈Dep(C)

(Inv(Ctr(U)) ∧ SInv(U))

for any method op in the contract of C in the system S1.

Example:
A Car Navigation System (CNS) [4] assists the driver

of a car to navigate through an area. To interact with
the driver, it consists of a display to show a map of the
area around the car location, a keypad to enter commands
(e.g. “display <map>”, “zoom in/out” and “find a route to
<destination>”).

A component based design for CNS which is shown in
Fig 1, consists of the following main components in which
the Dep relation between components is represented by ar-
rows in the figure).

1. Component GPS: This component has one method
get pos(out : src) with the specification

〈{src}, true `f src′ = current position, 0 < ` ≤ 1〉.
We leave the code of this method unspecified here,
but assume that the code does not contain any call
to a method from other components. The only other
component that may use this component is Controller.
(We leave the resource unspecified here, and assume
that the resource-precondition for get pos(out : src) is
true.

2. Component RouteDB: The resource declaration of this
component consists of resource variables memory (ini-
tiated to 4 (Mb)) and 75MHz processor (initiated to
1). The component has two methods

get map(in : src, in : dstn, out : map), and
find route(in : src, in : dstn, out : route).

The specifications of these methods are given respec-
tively as

〈{src, dstn, map}, true `f map′

= map for the area, 0 < ` ≤ 1〉, and
〈{src, dstn, route}, true `f route′

= route to the destination,
75MHzprocessor = 1∧

memory = 4 `n 0 < ` ≤ 11〉.
The only other component that may use this com-
ponent is Controller. The code for find route(in :
src, in : dstn, out : route) is

get map(src, dstn, map);
compute(src, dstn, map, route).

Assume that compute(src, dstn, map, route) needs 10

seconds to perform using 4 Mb memory, and a 75 MHz
processor, then this code is a refinement of the speci-
fication of find route(in : src, in : dstn, out : route).

3. Active component Controller: This component has
an event find route command arrival, and a method
find route handler. The resource declaration of this
component has variable 75MHz processor which is
initiated to 1. The code for this method is

dstn := read dstn;
(Schedule(Controller, GPS)||GPS.get pos(src));
(Schedule(Controller, RouteDB)||

RouteDB.find route(src, dstn, route));
display route(dstn).

Time specification of this method is 0 < ` ≤ 14. As-
sume each of dstn := read dstn and display route(dstn)
has the time consumption less than 1 using a 75 MHz
processor. We assume that the commands
Schedule(Controller, RouteDB) and
Schedule(Controller, RouteDB) do not take time, i.e.
` = d (we cannot assume ` = 0 because of our earlier
assumption) is their post condition for timed specifica-
tion (their precondition is given later as invariant for
all three components), where d is the smallest amount
of time to perform a command. It is derived directly
from the sequential and parallel composition rule that
the code of this method is the refinement of its speci-
fication.

A thread of this component is
always find route handler

after findroute command arrival.

2

So, in this model of component based systems we can
use the Unifying Theory of Programming and additional
rules for the real-time specification of designs to verify if a
method is implemented properly or not. However, in order
for this model to support the verification of the temporal and
real-time properties, we have to give a formal meaning for
threads, and a formal specification for real-time properties.

3. MODELING REAL-TIME PROPERTIES
AND THREADS IN EXTENDED
DURATION CALCULUS

Although the concept of timed designs defined in the pre-
vious section can be used to specify the relation between
the starting state and the final state, and the execution
time of a program in case it terminates, this concept is not
strong enough to specify the behaviour of a program dur-
ing its execution and the liveness properties such as threads
of component. Especially, nonterminating programs can-
not be specified as a timed design. Hence, we need a more
powerful specification language which can model real-time
properties and threads of component systems. In this sec-
tion, we give a summary of our specification and verification
techniques for real-time systems. Namely, we use Extended
Duration Calculus (EDC) introduced by Zhou et al [1] as our
specification language because of its simplicity and intuitiv-
ity. We will interpret (lift) all the program variables x in
our component based systems as right continuous step func-
tions of time x (note that only the typefaces are changed).
We assume that we are given a set M of real functions

and a set B of Boolean functions of time that we are inter-
ested in. Note that for an n-ary relation R over Reals, for
f1, . . . , fn ∈M, R(f1, . . . , fn) is a Boolean function defined
by R(f1, . . . , fn)(t) = true iff R(f1(t), . . . , fn(t)) = true. We
define real functions and boolean functions over the set Intv
of time intervals {[a, b]|a, b ∈ Reals, a ≤ b} as follows.

• For any real function f ∈ M, b.f and e.f , when ap-
plied to an interval, returns the value of f at the be-
ginning and the ending points of the intervals, respec-
tively.

• For any Boolean function b ∈ B, dbe is a boolean func-
tion of intervals which is evaluated to true over an
interval [c, d] iff d − c > 0 and b is interpreted as true
everywhere inside [c, d] (i.e. everywhere in the open
interval (c, d)).

• For any Boolean function b ∈ B, dbe0 is a boolean
function of intervals is evaluated to true over an inter-
val [c, d] iff c = d (i.e. [c, d] is a point interval) and
b(c) = true. So, dtruee0 is satisfied by [c, d] iff [c, d] is
a point interval.

Formulas of EDC are interpreted as a mapping from Intv
to {true, false} and defined by:

1. A relation between real functions of intervals defined
as above is a formula, which evaluates to true for an
interval iff the values of the functions at this interval
satisfy the relation.

2. A Boolean function of intervals defined as above is a
formula, which evaluates to true for an interval iff the
value of the function at this interval is true.

3. For formulas R1 and R2, R1; R2 is a formula which
evaluates to true for an interval [a, b] iff R1 evaluates
to true for interval [a, m] and R2 evaluates to true for
interval [m, b] for some a ≤ m ≤ b.

4. Boolean Connectives of formulas are formulas with
usual semantics.

5. For a formula R, 3rR is a formula which evaluates to
true at interval [a, b] iff R evaluates to true at interval
[b, m] for some m ≥ b.

We use standard abbreviation in EDC:

3φ
def
= true_(φ_true) (φ is true for all subintervals)

2φ
def
= ¬3¬φ (φ is true for a subintervals)

Since dbe0_dpe0 ⇔ db∧pe0 is valid in EDC for any Boolean
functions b and p, we should assume that the computation
always takes time to avoid conflict, and hence, for any design
〈α, FP, FR〉 we assume that FR ⇒ ` > 0 (without this
assumption, the semantics of x := x + 1 cannot be defined
because x would have different values at a time point). The
EDC semantics and the untimed EDC semantics for a design
D b= 〈α, FP, FR〉 are defined respectively as the following
formulas:

T (D) b= ∧x∈α(b.x = x ∧ e.x = x′) ∧ FP ∧ FR ∧ T C(D)
UT (D) b= ∧x∈α(b.x = x ∧ e.x = x′) ∧ FP ∧ ` > 0∧

UT C(D)

Note the formula UT (D) only says about the temporal
order between the changes of variables, but not time con-
straints. These formulas are satisfied by an interval [a, b]
iff the design D starts at time a (ok and preconditions are
satisfied at time a) and terminates at time b, b > a (ok′

and post conditions are satisfied at time b). It requests for
the first formula that the time consumption is ` = (b − a)
and satisfies FR. T C(D) and UT C(D) are EDC formulas
expressing the timed and untimed behaviour, respectively,
of D inside the interval [a, b], and is defined based on the
code of D. We will not give the definition of T C(D) and
UT C(D) here, and refer readers to [10] for the details.

Now we give formal semantics for events and threads in
active components.

An event is a boolean expression b, and its occurrences
should be isolated and not too frequent. So, for an event b
it holds that:

dbe0_true ⇒ dbe0_d¬be_true, and
∃δ • 2(dbe0_d¬be_dbe0 ⇒ ` ≥ δ)

The semantics and the untimed semantics of a thread
“always D follows e” are defined respectively as:

2(dee0 ⇒ 3rT (D)), and
2(dee0 ⇒ 3rUT (D))

which means that event e always trigers the method D.
A real-time requirement R for a component based system

S is an EDC formula on the events and other features of the
active components of the system S. Requirement R is ver-
ified iff it is provable from the semantics of all the threads
in the system provided that SInv(C) holds during the time
a method D in component C is performing, i.e.
2(T C(C.D) ⇒ dSInv(C)e0; dSInv(C)e; dSInv(C)e0)
(to guarantee that the methods used in the system are im-
plemented correctly according to the definition of compo-
nents) should be derivable from the timed semantics of the
system. Note that the invariants SInv are used as the pre-
condition for the scheduler only, and have nothing to do
with the untimed behaviour of the system (which does not
depend on the scheduler). Hence, we have the following
theorem which is the easiest way to verify the condition
2(T C(C.D) ⇒ dSInv(C)e0; dSInv(C)e; dSInv(C)e0):

Theorem 6. If for all components C in a component based
system S it is provable from the untimed EDC semantics of
all threads in the system that 2(dtruee0 ⇒ dSInv(C)e0) then
2(dtruee0 ⇒ dSInv(C)e0) holds for the timed system.

In general, some assumptions from the environment are
needed to ensure the schedule invariant SInv for compo-
nents. Those assumptions could be the frequency of the
trigger events, etc.
Example: Now we illustrate how our model works via the
Car Navigation System in the previous example.

The thread of active component Controller
always find route handler
after findroute command arrival
has the EDC semantics:

dfindroute command arrivale0 ⇒
3rT (find route handler)

Let the invariant SInv for scheduler for all components C
be wC +rC ≤ 1, where wC is the number of calls to a method

in C that are waiting, and rC is number of calls that are on
processing. This invariant for a component C just says that
the concurrent use of a component is not allowed, and when
a component is in use by another component, then there is
no other request for a service from it.

One of the requirement for the CNS is that the deadline
for finding a route is 15 seconds which is specified as the
following EDC formulas

dfindroute command arrivale0 ⇒
3r` ≤ 15_ddisplay route(dstn)e0

Because

T (find route handler) ⇒
` < 14_ddisplay route(dstn)e,

the requirement is implied by the semantics of the thread,
provided that SInv is provable from the timed semantics of
the system. SInv is provable if we have an assumption

dfindroute command arrivale0_

d¬findroute command arrivale_
dfindroute command arrivale0 ⇒ ` > 15

A formal proof of this would involve the proof system of
EDC which is not given here. But we do believe that it can
be done with the assistance of a theorem prover like PVS.
2

4. CONCLUSION AND RELATED WORK
This paper has presented a model for component-based

real-time embedded systems. The model is an extension of
the one for untimed systems proposed in He and Liu’s work
[6] to cover the timing and resource aspects of component-
based systems. There are significant differences between this
model and the original one. A component in this paper is
defined to carry some architectural information to support
the schedule of the concurrent use of its services as well as
timing and resource constraints.

The main purpose of our model is to support the speci-
fication and refinement of components, and the verification
of some real-time properties. This is especially useful for
the development of safety critical systems. Our model also
supports the separation between the functionality specifica-
tion from the non-functionality specification of components,
which can simplify the verification of the functionality re-
quirements, and in many cases can simplify the verification
of non-functional requiremenst as well, particularly when
the real-time requirements are in the form of deadline con-
straints. We can give a small extension to a specification
language to support our model.

With UML, one can derive a component based design and
implementation. But since UML is just semi-formal, it does
not support the formal verification of the system. Further-
more, even real-time UML does not support the timed de-
sign for components. Our technique is used as a complement
to UML to support the timed design and the formal verifi-
cation of the safety critical systems. With the separation of
non-functionality and functionality during the system devel-
opment, we first use UML to design an untimed system that
satisfies the functionality requirements. Then, resource and
time constraints are added to the untimed design of meth-
ods based on the timed sequence diagrams. After that, the
specification of the scheduling for the concurrent use of ser-
vices is introduced as global invariants distributed over the

components. The final timed design is then verified formally
against the non-functionality requirements.

In this paper, for simplicity, we have assumed a very sim-
ple way of communicating between components. The model
can be extended for handling communication by introduc-
ing communication events and methods in the active com-
ponents. There is still quite a lot of work to make our model
more detailed. Also, there is a question if our verification
and analysis techniques can be supported by any automatic
tool. The answer is yes at least for the verification using a
theorem prover like PVS. This will be in our future work.

We would like to mention here some work in the literatures
related to this topic.

In [8, 12] a temporal logic is introduced to specify real-
time properties in specification classes. Extended class dia-
grams and extended statechart diagrams are used together
with classical UML diagrams. They also suggest to use XTG
to describe the behaviour of real-time systems and propose a
technique to convert real-time UML with clock variables into
XTG. In [3], OCL is extended to specify real-time properties.
In [9], timing properties are introduced as guards for tran-
sition, statecharts can specify real-time behaviour. They
propose the stereotype “SIP view” to specify the temporal
order of the interaction for different customers to simplify
the interactions (multiple views). This approach is similar
to our specification of concurrent threads except that SIP
views do not carry timing information. In [2], a temporal
logic is introduced for specifying dynamic and static prop-
erties of object systems. A map to convert a large fragment
of OCL to the logic is also proposed.

In [11], they propose a method to build timed models of
real-time systems by adding time constraints to their appli-
cation software. The applied constraints take into account
execution times of atomic statements, the behaviour of the
systems external environment and scheduling policy. Their
model can be analysed by using time analysis techniques to
check relevent real-time properies. In comparison with their
work, our approach is similar, but we work at the compo-
nent level as well as the system level. Also, in our work, in
order to increase the reusability of a component, we specify
time as a relation between resource and time contraints.

Acknowledgement The author is grateful to the anony-
mous referees for their valuable comments that helped to
improve this paper.

5. REFERENCES
[1] Zhou Chaochen, Anders P. Ravn, and Michael R.

Hansen. An Extended Duration Calculus for
Real-time Systems. Published in: Hybrid Systems,
LNCS 736, 1993.

[2] Dino Distefano, Joost-Pierter Katoen, and Arend
Rensink. On a Temporal Logic for Object-based
Systems. In S. F. Smith and C. L. Talcot, editors,
Formal Methods for Open Object-based Distributed
Systems, p. 305–326. Kluwer Academic Publisher,
2000.

[3] Stephan Flake and Wolfgang Mueller. A UML Profile
for Real-Time Constraints with OCL. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, editors, UML
2003, volume 2460 of LNCS. Springer-Verlag, 2002.

[4] Dieter K. Hammer. Software Architectures and
Component Technology (Editor: Mehmet Aksit),

chapter Component-based Architecting for
Distributed Real-time Systems. Kluwer, 2002.

[5] C.A.R. Hoare and He Jifeng. Unifying Theories of
Programming. Prentice Hall Series in Computer
Science. Prentice Hall, 1998.

[6] He Jifeng, Zhiming Liu, and Li Xiaoshan.
Contract-Oriented Component Software Development.
Technical Report 276, UNU-IIST, P.O.Box 3058,
Macau, April 2003.

[7] He Jifeng, Liu Zhiming, and Li Xiaoshan. Modelling
Object-oriented Programming with Reference Type
and Dynamic Binding. Technical Report 280,
UNU-IIST, P.O.Box 3058, Macau, May 2003.

[8] E.E. Roubtsova, J. van Katwijk, W.J.Toetenel, and
R.C.M.de Rooij. Real-Time Systems: Specification of
Properties in UML. In ASCI 2001 conference, pages
pp.188–195, Het Heijderbos, Heijen, The Netherlands,
May 30 - June 1 2001.

[9] Shane Sendall and Alfred Strohmeier. Specifying
concurrent system behavior and timing constraints
using OCL and UML. In Martin Gogolla and Cris
Kobryn, editors, UML 2001 - The Unified Modeling
Language. Modeling Languages, Concepts, and Tools.
4th International Conference, Toronto, Canada,

October 2001, Proceedings, volume 2185 of LNCS,
pages 391–405. Springer, 2001.

[10] François Siewe and Dang Van Hung. Deriving
Real-Time Programs from Duration Calculus
Specifications. Technical Report 222, UNU-IIST, P.O.
Box 3058, Macau, December 2000. Published in the
proceedings of the 11th Advanced Research Working
Conference on Correct Hardware Design and
Verification Methods (CHARME 2001),
Livingston-Edinburgh, Scotland, 4–7 September 2001,
LNSC 2144, Springer-Verlag, 2001, pp. 92–97.

[11] J. Sifakis, S. Tripakis, and S. Yovine. Building models
of real-time systems from application software. In
Special issue on modeling and design of embedded
systems, volume 91(1) of Proceedings of the IEEE,
pages 100–111, January 2003.

[12] Hans Toetenel, Ella Roubtsova, and Jan van Katwijk.
A Timed Automata Semantics for Real-Time UML
Specifications. In IEEE Symposia on Human-Centric
Computing Languages and Environments (HCC’01),
Visual Languages and Formal Methods (VLFM’01),
pages 88–95, Stresa, Italy, September 5-7 2001. IEEE
Computer Society.

