ABSTRACT
We give a model of component interface for real-time component based systems. We extend the specification of a method with a time constraint which is a relation between the resource availability and the amount of time spent to perform the method. We define a contract to include method specification, and define a component as an implementation of a contract. This implementation may require services from other components with some assumptions about the schedule for the use of shared methods and resources with the presence of concurrency. Our model supports the separation between functional and non-functional requirements, and the formal compositional verification of component-based real-time systems.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—Programming by contract, Formal methods

General Terms
Theory

Keywords
Component-based systems, real-time constraints, extended duration calculus, unifying theory of programming

1. INTRODUCTION
Reusability is one of the advantages of component based development methods. However, when adding time features to the specification of a component, the reusability of the component is reduced if they are not flexible. This is typically true for real-time embedded systems, where components are based on specific hardware. If the timing specification of a component is fixed for that hardware, then the component cannot be used for different hardware. Furthermore, the real-time requirement of a component based system in general is achieved not only by the individual components but also by their interactions. In order to increase the flexibility for the timing specification of a component, we specify the timing of each of its methods as a relation of the time to carry out the method and the resources provided to the component. The implementation of a method may depend on services from other components which may be mutually exclusive with the presence of concurrency. Therefore, to guarantee its real-time services, a component needs an assumption about the real-time behaviour of the interaction of components in the system as well as the schedule for services of the system. To capture these kind of assumptions we introduce a schedule invariance to the specification of the component interface. Then, the component can provide correct service only if this invariance is satisfied. In the literature, there are a lot of work on the component interfaces, but not many of them take into account the timing specifications to our knowledge.

In this paper, we propose a model for component systems based on this idea using the notations from the Unifying Theory of Programming. With the flexible real-time specification for methods, with the assumption for the component interaction as schedule invariance interface, our model supports the formal compositional verification and facilitates the schedulability analysis of component-based real-time systems. The formal verification for industrial safety critical applications plays an important role, but is very difficult to perform even with the assistance from tools. Therefore, the compositionality will help to reduced the complexity for that hard works, and encourages to carry out the formal verification.

The paper is organised as follows. In the next section, we present our formal model for real-time component interfaces and components. After that, in Section 3 we propose a formal semantics of concurrent threads in the active components. The last section is the conclusion of our paper.

2. A FORMALISM FOR COMPONENT INTERFACE SPECIFICATIONS
A component provides services to its clients. The services could be either data or methods. To specify timing features of a method in a flexible way, we assume a fixed set of integer variables $RES = \{res_1, \ldots, res_n\}$. The variable res_i indicates a resource type, and its value represents the amount of resources of the type assigned to a component. A method
will have a resource specification to specify the resource requirements for its implementation, which will be a predicate over the integer variables in \(RES \). A method will need some time to perform, and this amount of time depends on the type and number of available resources. We introduce a temporal variable \(\ell \) to represent the amount of time spent performing a method. The value of \(\ell \) for a method should satisfy some condition when the execution of the method terminates. This condition is represented as a predicate over the variable \(\ell \), the resource variables and the input variables for the method.

Definition 1 (Interface).
An interface \(I = (Fd, Md) \) consists of

- \(Fd \) - a feature declaration which is a set of variables,
- \(Md \) - a method declaration which is a set of methods; each method \(m \in Md \) is of the form \(op(in, out) \), where \(in \) and \(out \) are sets of variables.

A method in an interface is specified by a so-called “timed design” \(\langle \alpha, FP, FR \rangle \), where \(\alpha \) denotes the set of (program) variables used by the method, \(FP \) denotes the functionality specification, and \(FR \) denotes the non-functionality specification of the method. We follow the style in [6] to represent \(FP \) and \(FR \) (as in the unifying theory of programming by He and Hoare [5]):

- \(FP \) is a predicate of the form \((p \Rightarrow R) \equiv (ok \land p) \Rightarrow (ok' \land R) \) where \(p \) is the precondition of the method which is the assumption on the initial value of variables in \(ok \setminus \{ \text{out} \} \) that the method can rely on when activated, and \(R \) is the post condition relating the initial observations to the final observations (represented by the primed variables in the set \{\(x' \mid x \in \alpha \setminus \{ \text{in} \cup \text{out} \} \}) and variables in \(\text{out} \). The Boolean variable \(ok \) is a special variable denoting the termination of the method, i.e. \(ok \) is true iff the method starts, and \(ok' \) is true iff the method terminates. We use the index \(f \) in \(\text{in} \) to distinguish it with \(\text{in} \), where \(f \) stands for functional and \(n \) stands for non-functional. We borrow the notation \(\cong \) from the \(B \) method for the definition of a name.
- \(FR \) is a predicate of the form \(q \downarrow_n S \cong q \Rightarrow S \) where \(q \) is the resource precondition for the method in the given interface which is the assumption on the resources used by the method, and is represented as a predicate on the variables in \(RES \), and \(S \) is the timed post condition for the method which relates the amount of time \(\ell \) spent for performing the method and the resources used for the method. \(S \) is represented as a predicate on the variables in \(RES \), \(\alpha \) and \(\ell \).

The definition of \(FP \) in a timed design \(\langle \alpha, FP, FR \rangle \) is exactly the same as in the Unifying Theory of Programming. We give an example to illustrate the meanings for \(FR \). Let \(\alpha \cong \{ x, y \} \), \(FP \cong x \geq 0 \Rightarrow y' = x \) and \(FR \cong P133 + P266 \equiv 1 \lor ((P133 \equiv 1 \Rightarrow \ell \leq 0.001) \land (P133 \equiv 0 \Rightarrow \ell \leq 0.0005)) \). Then \(\langle \alpha, FP, FR \rangle \) represents a timed design to compute \(y = \sqrt{x} \) for a non negative \(x \) in which it takes no more than 0.001 time units when performed by a 133MHz processor, and it takes no more than 0.0005 time units when performed by a 266MHz processor.

Refinement of timed designs
The definition of the refinement relation for the timed designs is just a small extension of the one for the designs as presented in UTP and also in [6]. A timed design \(D_1 = \langle \alpha, FP, FR \rangle \) is refined by a design \(D_2 = \langle \alpha, FP, FR \rangle \) (denoted by \(D_1 \subseteq D_2 \)) iff

\[
(\forall ok, ok', v, v' \cdot FP \Rightarrow FR) \land (\forall r, \ell \cdot FR \Rightarrow FR) \]

where \(v, v' \) are vectors of the program variables, and \(r \) denotes a vector of the resource variables, \(r = (res_1, \ldots, res_n) \). The first part of the conjunction is to say that the functional part of \(D_2 \) is a refinement of the functional part of \(D_1 \) as in [6]. The second part of the conjunction simply says that if the non-functional requirement of \(D_2 \) is satisfied then the non-functional requirement of \(D_1 \) is also satisfied. Hence, \(D_2 \) can implement \(D_1 \).

Sequential Composition
Let \(D_1 = \langle \alpha, FP, FR \rangle \) and \(D_2 = \langle \alpha, FP, FR \rangle \) be timed designs. Then

\[
D_1; D_2 = \langle \alpha, FP, FR \rangle
\]

where:
- \(FP = FP_1(v') \land FP_2(v) \)
- \(FR = FR_1(m) \land FR_2(m) \)
- \(FR = FR_1(\ell_1) \land FR_2(\ell_2) \land \ell = \ell_1 + \ell_2 \)

Here and later, we use \(F[x_1/x] \) to denote the expression resulting from the substitution of \(x_1 \) for \(x \) in the expression \(F \). Note that we assume in this paper that all the resources are not consumable. Hence the same resources used for \(D_1 \) can be reused for \(D_2 \) when \(D_1 \) has terminated.

Disjoint Parallel Composition
Let \(D_1 = \langle \alpha_1, FP_1, FR_1 \rangle \) and \(D_2 = \langle \alpha_2, FP_2, FR_2 \rangle \) be timed designs. Assume that \(\alpha_1 \cap \alpha_2 = \emptyset \). Then

\[
D_1 \uplus D_2 = \langle \alpha, FP, FR \rangle
\]

where:
- \(\alpha = \alpha_1 \uplus \alpha_2 \)
- \(FP = FP_1 \land FP_2 \)
- \(FR = FR_1(\ell_1, r, r_1) \land FR_2(\ell_2, r_2) \land \ell = \max\{\ell_1, \ell_2\} \land r = r_1 + r_2 \)

where \(r_1 \) and \(r_2 \) are vectors of resource variables, and \(r_1 + r_2 \) are defined componentwise.

The condition \(r = r_1 + r_2 \) expresses that the number of resources are enough for performing \(D_1 \) and \(D_2 \) in parallel independently. The composed command terminates when both component commands terminate. To justify these two definitions, we can use the operational semantics for the programs defined as a labeled transition system (\(S \), \(\rightarrow \), \(C \)), where each state \(s \in S \) is a tuple \((v, r, \ell)\), \(v \) is a vector of values of program variables, \(r \) is a vector of values of resource variables, and \(\ell \) is a real number to indicate the real-time. \(C \) is the set of commands. Let the semantics of \(\alpha \in C \) be design \(\langle \alpha, FP, FR \rangle \), where \(FP = p \Rightarrow R \) and \(FR = p_0 \lor_n S \).

Then, there is a transition \((v, r, \ell) \rightarrow (v', r', \ell') \) iff \(p(v) \land R(v, r') \land r = r' \land p_0(v) \land \ell = \ell' \land S(\ell, r, v, v') \) according to the interpretation of designs. Defining the disjoint parallel composition and sequential composition in the obvious way.
in the label transition system coincides with the definition given above. It is obvious that like for untimed designs:

Theorem 1. The relation \(\subseteq\) is a partial order relation on the set of timed designs, and the disjoint parallel composition and the sequential composition are monotone according to this relation.

Definition 2. (Timed Contract). A timed contract is a tuple \((I, Rd, MSpec, Init, Inv)\), where

- \(I\) = \(\langle Fd, Md \rangle\) is an interface
- \(Rd\) - a resource declaration, which is a subset of RES,
- \(Init\) is an initialization, which associates each variable in \(Fd\) and each local variable with a value of the same type, a variable in \(Rd\) with an integer,
- \(MSpec\) is method specification which associates each method \(op\) \((in, out)\) in \(Md\) with a timed design \(\langle \alpha, FP, FR \rangle\), where \(\alpha \cap (in \cup out) \subseteq Fd\), and
- \(Inv\) is a predicate on the features in the contract (called contract invariance). \(Inv\) represents an invariant property of the value of the variables in the feature declaration \(Fd\) that can be relied on at any time that it is accessible from outside. Hence, \(Inv\) is satisfied particularly by \(Init\).

We want to emphasise here that the resource variables declared in \(Rd\) in a contract are internal (local) in the contract (and in the components - see below - that implement the contract). \(Inv\) in a contract expresses a property of the variables of the contract that it offers to the environment. In case the contract cannot guarantee any invariant property of its variables, \(Inv\) is true.

Definition 3. (Refinement of Contracts). Timed contract

\[Ctr1 = \langle Fd1, Md1, Rd1, MSpec1, Init1, Inv1 \rangle \]

is refined by timed contract

\[Ctr2 = \langle Fd2, Md2, Rd2, MSpec2, Init2, Inv2 \rangle, \]

(denoted \(Ctr1 \subseteq Ctr2\)) if:

- \(Fd1 \subseteq Fd2\), \(Rd1 \subseteq Rd2\), and \(Init2|_{Md1} = Init1|_{Md1}\) (where for functions \(f, f_1, f_2\) and a set \(A\), \(f|_A\) denotes the restriction of \(f\) on \(A\), and \(f_1 \leq f_2\) denotes that \(f_1\) and \(f_2\) have the same domain and \(f_1(x) \leq f_2(x)\) for all \(x\) in their domain),
- \(Md1 \subseteq Md2\),
- For all methods \(op\) declared in \(Md1\)

\[MSpec1(op) \subseteq MSpec2(op), \]

and \(Inv2 \Rightarrow Inv1\).

We justify this definition as follows. \(Ctr2\) provide all services that \(Ctr1\) does, but may provide more. \(Ctr2\) should have at least the same resources as \(Ctr1\) does. The condition \(Inv2 \Rightarrow Inv1\) says that the property of variables guaranteed by \(Ctr2\) is ensured by \(Ctr1\). Hence we can use \(Ctr2\) to replace \(Ctr1\) without losing any services.

Let \(Ctr_i = \langle Fd_i, Md_i, Rd_i, MSpec_i, Init_i \rangle, i = 1, 2\) be timed contracts which have the compatible sets of features and methods, i.e. \(f \in Fd_1 \cap Fd_2\) implies \(Init1(f) = Init2(f)\) and \(op \in Md_1 \cap Md_2\) implies \(MSpec1(op) \equiv MSpec2(op)\). The combination \(Ctr1 \cup Ctr2\) is defined as:

\[Ctr1 \cup Ctr2 = \langle \langle Fd1 \cup Fd2, Md1 \cup Md2, Rd1 \cup Rd2, MSpec1 \cup MSpec2, \]

\[Init1 \equiv Init2, Inv1 \land Inv2 \rangle, \]

where \((Init1 \equiv Init2)(x)\) is defined to be

\[
\begin{align*}
\max\{Init1(x), Init2(x)\} & \quad \text{if } x \in dom(Init1) \cap dom(Init2) \\
Init1(x) & \quad \text{if } x \in dom(Init1) \setminus dom(Init2) \\
Init2(x) & \quad \text{if } x \in dom(Init2) \setminus dom(Init1)
\end{align*}
\]

When \(Ctr1 \cup Ctr2\) is defined, we say that \(Ctr1\) and \(Ctr2\) are composable. Note that when combining two contracts, the amount of resources available for the combined one is defined as the maximal of the component contracts. This definition reflects our view that a method in the combined contract have at least the same time performance as it has in the component contracts, provided the following well-formedness is satisfied. The well-formedness means that a better timed performance is achieved if more resources are provided, and is formalised as:

A timed design \(\langle \alpha, FP, FR \rangle\) is said to be well-formed iff \(FR\) satisfies

\[
\forall r, r_1 \cdot (r \geq r_1 \Rightarrow (FR[r/RES] \Rightarrow FR[r_1/RES])),
\]

where \(r\) and \(r_1\) are vectors of values of resource variables (recall that \(RES\) is the vector of resource variables, and \(FR\) is a relation on \(RES\), \(t\) and \(\alpha\)). For the definition of the refinement of timed contracts to be meaningful, we assume that all the timed designs for the specification of contracts are well-formed.

Theorem 2. Let \(Ctr1, Ctr2\) be composable timed contracts in which the specification of all methods are well-formed. Then \(Ctr1 \subseteq Ctr2\) for \(i = 1, 2\).

Proof. By direct check from the well-formedness of the specifications for methods and the definition of the timed design refinement.

Now we want to formalise the concept of component. Intuitively, a passive component is an implementation of a contract using services from other passive components via their contract. For the simplicity of presentation, we do not introduce the concept of private methods and private features, and use the simple architectural style with the client/server initiative, and synchronous communication. Our model can be extended to the general case easily. Recall that we are dealing with real-time methods. The implementation of a method may invoke other methods in other components. The invocation of methods in other component may need some extra time for handling the concurrent use of the methods. This is because that when there are concurrent calls to a method, the system needs a scheduler to schedule the uses of the method, which may force a call to wait. We assume that there is a scheduler in the system. This scheduler may be centralized or distributed. We try to incorporate only the needed information about the scheduler into components by using a schedule invariance \(SInv\). As with the set of resource names, we fix a set of global variables \(II\) that are used by
the scheduler. Each \(v \in \Pi \) may correspond to a call from a component \(C \) for a service from a component \(Q \). The scheduler uses the variables in \(\Pi \) to schedule for calls from components based on the schedule invariant \(\text{Inv} \). We also introduce a set \(\text{Dep} \) of component names in the declaration of a component \(\text{Comp} \). \(\text{Dep} \) is a finite set of components that \(\text{Comp} \) depends on. The idea is that when the implementation of a method \(op \) in \(\text{Comp} \) has a call to a method in a component \(C \) then this call should be sent to the scheduler for scheduling. The scheduler bases on the current requests to resolve any conflict and may force some calls to wait a certain amount of time.

Definition 4 (Passive Components). A real-time passive component is a tuple

\[
\text{Comp} = (\text{Ctr}, \text{Dep}, \text{SDep}, \text{Mcode}, \text{SInv}),
\]

where \(\text{Comp} \) is identified with the name of the component, consisting of

- a contract \(\text{Ctr} = (\text{Fd}, \text{Md}), \text{Rd}, \text{Mspec}, \text{Init}, \text{Inv} \).
- a set \(\text{Dep} \) of component names, each element of \(\text{Dep} \) is the name of other components that \(\text{Comp} \) depends on.
- \(\text{SDep} \) is the set of variables in \(\Pi \) (representing the interaction with the scheduler).
- \(\text{SInv} \) is a predicate on the variables \(v \in \text{SDep} \) (to express the assumption about information that the scheduler can rely on when a method in \(\text{Comp} \) is called).
- \(\text{Mcode} \) assigns to each method \(op \) in \(\text{Md} \) a design built from basic operators (as well understood or defined in \([7]\) with a suitable time consumption assumption as time and resource specification) and the method calls of the form \(\text{call}(\text{Comp}, C, op) \), where \(op \) is a method in a component \(C \) in \(\text{Dep} \) (see below). Note that method names, resource variables and local variables used in the specification and implementation of a method \(op \) (in, out) in a passive component \(C \) (with the name \(C \)) are local in \(C \), and are prefixed by “\(C \)” to avoid the components with the variables used in other passive components.
- Let \(\text{Env} \) denote the predicate

\[
\land_{U \in \text{Dep}}(\text{Inv}(\text{Ctr}(U)) \land \text{SInv}(U))
\]

(here and below we use \(\text{Ctr}(U) \) to denote the contract of component \(U \), \(\text{Inv}(\text{Ctr}(U)) \) to denote the invariant of the contract of component \(U \), \(\text{Dep}(U) \) to denote the set of component names that \(U \) depends on, and \(\text{SInv}(U) \) to denote the system schedule invariant of component \(U \)). The following condition should be satisfied by \(\text{Mcode} \): \(\text{Env} \models (\text{Mspec}(op) \subseteq \text{Mcode}(op)) \), and \(\text{Inv} \) is preserved by any operation used in \(\text{Mcode} \).

Let \(C \in \text{Dep} \), and \(op \in C \). Then \(\text{call}(\text{Comp}, C, op) \) is defined as \(\text{Schedule}(\text{Comp}, C)(C, op) \), where \(\text{Schedule}(\text{Comp}, C) \) is a design using variables in \(\text{SDep}(C) \) (the value of these variables represent the current calls to a method in \(C \); we expect that the precondition of \(\text{Schedule}(\text{Comp}, C) \) is implied by \(\text{SInv}(C) \)).

Contract \(\text{Ctr} \) is said to be implemented by \(\text{Comp} \).

In the definition of component \(\text{Comp} \), it requires that \(\text{Mspec}(op) \subseteq \text{Mcode}(op) \) for every method \(op \) in the contract of \(\text{Comp} \) under the assumption

\[
\land_{U \in \text{Dep}}(\text{Inv}(\text{Ctr}(U)) \land \text{SInv}(U))
\]

In words, this means that provided that all the components that \(\text{Comp} \) depends on ensure their invariants, any method of component \(\text{Comp} \) is implemented correctly. Also, we require that any operation in \(\text{Comp} \) should ensure the invariants of \(\text{Comp} \). Therefore, \(op \) can be used as a proper service with the specification \(\text{Mspec}(op) \). How to make sure that \(\land_{U \in \text{Dep}}(\text{Inv}(\text{Ctr}(U)) \land \text{SInv}(U)) \) is guaranteed? The implementation of \(op \) relies on the methods in the components with names in \(\text{Dep} \). But the implementation of those methods may eventually rely on \(op \). This situation may cause circular reasoning, and may cause \(op \) to be implemented incorrectly. This situation will not happen if we have the well-implementedness for the methods defined as follows.

Definition 5. Well-implemented methods are defined recursively as

1. if \(op \) is a method in a component with the code \(\text{Mcode}(op) \) composed from the basic commands, then \(op \) is well-implemented

2. if \(op \) is a method in a component with the code \(\text{Mcode}(op) \) composed from the basic commands and method-calls for a well-implemented method, then \(op \) is well-implemented.

So, well-implemented methods do not contain recursive method-calls, although methods which contain recursive method-calls may always terminate and have well-defined semantics.

Let \(\text{Comp} = (\text{Ctr}, \text{Dep}, \text{SDep}, \text{Mcode}, \text{SInv}) \). Let \(\text{Dep} \) be a binary relation defined as

\[
\text{Dep} \equiv \{(C_1, C_2) | C_2 \in \text{Dep}(C_1)\}
\]

(i.e. \(C_1 \text{Dep}^* C_2 \) if the implementation of a method in \(C_1 \) contains a call to a method in \(C_2 \)). Let \(\text{Dep}^+ \) and \(\text{Dep}^* \) be the transitive closure and the reflexive and transitive closure of \(\text{Dep} \) respectively.

By repeatedly replacing a method name by its implementation, we have:

Theorem 3. Let \(\text{Comp} = (\text{Ctr}, \text{Dep}, \text{SDep}, \text{Mcode}, \text{SInv}) \), and let \(op \) be a well-implemented method of \(\text{Comp} \). Then, there is a program text \(P \) without occurrences of method calls such that \(\land_{U \in \text{Dep}^+(\text{Comp})}(\text{Inv}(C)) \models \text{Mspec}(op) \subseteq P \).

Combination of Components

Let \(C_i = (\text{Ctr}_i, \text{Dep}_i, \text{SDep}_i, \text{Mcode}_i, \text{Inv}_i) \), \(i = 1, 2 \) be passive components which have the compatible contracts, and satisfy that \(\text{Mcode}_1(op) \equiv \text{Mcode}_2(op) \) for all \(op \in \text{Md}_1 \cap \text{Md}_2 \). The combination \(C_1 \cup C_2 \) is defined as \((\text{Ctr}_1 \cup \text{Ctr}_2, \text{Dep}_1 \cup \text{Dep}_2, \text{SDep}_1 \cup \text{SDep}_2, \text{Mcode}_1 \cap \text{Mcode}_2, \text{Inv}_1 \land \text{Inv}_2) \).

Let \(U \) be a finite set of passive components such that \(\bigcup_{U \in \mathcal{U}} U.\text{Dep} \subseteq \mathcal{U} \) (recall that \(U.\text{Dep} \) is the set of components that component \(U \) depends on). Let dependency graph of \(\mathcal{U} \) be defined as the directed graph \(D(\mathcal{U}) = (\mathcal{U}, \mathcal{A}) \), where \((U, V) \in \mathcal{A} \) iff \(V \in U.\text{Dep} \). \(\mathcal{U} \) is well structured iff its dependency graph has no cycle. A passive component \(U \) is said to be self-contained iff \(U.\text{Dep} = \emptyset \).
Remark

- The methods in components are defined as designs with preconditions, post conditions and relations on the amount of time to execute the methods and the resource availability. This is suitable for specifying the termination systems, but is not powerful enough to express the behaviour of nonterminating programs or reactive systems.

- The definition of a component $Comp$ requires that $Mspec(op) \subseteq Mcode(op)$ under the assumption

$$\bigwedge_{U \in Dep} (Inv(Ctr(U)) \land SInv(U)).$$

The condition $Inv(Ctr(U))$ is on the variables used to implement the functionality specification for the method op. The condition $SInv(U)$ is on the variables in $SDep(U)$ used by the scheduler only, and is used to implement the non-functional specification of the method. Therefore if $SInv(U)$ is verified as a global invariant for the corresponding untimed system (which has more untimed behaviours than the timed system), it must be an invariant of the timed system as well. The verification of the invariant $SInv(U)$ for the corresponding untimed system can be done with classical techniques. For example, when scheduling is unnecessary (e.g. the parallel usages of services are allowed, or services are called by only one component at a time, $SDep(U) = \emptyset$ for all U), then, and we can have

$Schedule(Comp, C) = (\emptyset, skip, \ell = 0)$ (later we will assume that computations always take time, hence, the time specification for the scheduler in this case should be changed to $\ell > 0 \land \ell \leq d$ where d is the smallest amount of time needed to perform a command under the assumption about resources in the system). The pre-condition for $Schedule(Comp, C)$ is true, and hence $SInv(C)$ can be true, which is a trivial invariant. As another example, assume that the scheduler uses the 'first in first service' (FIFO) policy, and the maximal amount of time that a component uses a service of component $Comp$ each time is a, and that at most n other components may use services of $Comp$. Then we can have $Schedule(Comp) = (SDep(U), FP, \ell \leq n \times a)$. We leave FP unspecified here. Whether there are concurrent calls to a component or not depends on if there are concurrent active methods in the system. The latter depends on if the language allows a method to be implemented with parallel commands or if there are more than one thread running in parallel in the system. We will discuss more about this aspect later.

From the discussion in the remark, it is reasonable to define that a component $Comp_1$ is refined by a component $Comp_2$ if and only if $Comp_2$ is better than $Comp_1$ in the sense that $Comp_2$ provides more services than $Comp_1$, but needs less services than $Comp_1$, and the schedule condition needed in $Comp_2$ is looser than in $Comp_1$ (i.e. $Comp_2$ has weaker invariants for the scheduler, hence the scheduler working for $Comp_1$ should work for $Comp_2$).

Theorem 4. If U is well-structured, any method in a component $U \in U$ is well-implemented.

Active Components

Active components are defined in the same way as passive components, except that the active components should have concurrent thread declarations and event declarations. Active components are driven by either events from the environment or by their internal clocks. A thread T is defined as always D follows e, where e is an event which is a boolean expression, and D is a method. The meaning of the notation “D follows e” is $e \Rightarrow ok \land D$. Roughly speaking, thread T is listening for the occurrences of event e whenever event e occurs, method D should be invoked. The formal meaning of the operator always will be given in the next section using a real-time temporal logic.

Definition 7. A component based system is a set S of components such that for any active component $U \in S$, for any V such that $U \in Dep^* V$, $V \in S$ holds.

In a component based system, we can replace a passive component by a better component without any violation of the requirements.

Theorem 5. Let S be a component based system. Let $Comp_1$ and $Comp_2$ be passive components such that $Comp_1 \subseteq Comp_2$, and let $Comp_1 \in S$. Let S_1 be obtained from S by replacing $Comp_1$ by $Comp_2$ and replacing each occurrence of the name $Comp_1$ in components in S by an occurrence of the name $Comp_2$. Then S_1 is also a component based system, and provides more services than S.

Proof. The only thing we need to prove is that after the replacement of the occurrences of the name $Comp_1$ by the occurrences of the name $Comp_2$, the resulting system is also a set of components, i.e. we have to show that for any method op in a contract of a resulting component C,

$$Mspec(op) \subseteq Mcode(op)$$

under the assumption

$$\bigwedge_{U \in Dep(C)} (Inv(Ctr(U)) \land SInv(U)).$$

From Definition 6, it follows that

$$Schedule(Comp, Comp_1) \mid \mid Comp_1 \cdot op \subseteq Schedule(Comp, Comp_2) \mid \mid Comp_2 \cdot op$$

for any method op in $Comp_1$. Hence, from the monotonicity of operations in the used programming language according to the refinement relation, and from the fact that $SInv(Comp_2) \Rightarrow SInv(Comp_1)$ we have that

$$Mspec(op) \subseteq Mcode(op)$$
Figure 1: A Component Diagram for CNS.

holds under the assumption
\[\bigwedge_{U \in Dep(C)} (Inv(Ctr(U)) \land SInv(U)) \]
for any method \(op \) in the contract of \(C \) in the system \(S_1 \). □

Example:
A Car Navigation System (CNS) [4] assists the driver of a car to navigate through an area. To interact with the driver, it consists of a display to show a map of the area around the car location, a keypad to enter commands (e.g. “display <map>”, “zoom in/out” and “find a route to <destination>”).

A component based design for CNS which is shown in Fig 1, consists of the following main components in which the Dep relation between components is represented by arrows in the figure).

1. Component \(GPS \). This component has one method \(get_pos(out : src) \) with the specification
\[\{\{src\}, true \vdash f src' = current_position, 0 < \ell \leq 1\}. \]

We leave the code of this method unspecified here, but assume that the code does not contain any call to a method from other components. The only other component that may use this component is Controller. (We leave the resource unspecified here, and assume that the resource-precondition for \(get_pos(out : src) \) is true.

2. Component \(RouteDB \). The resource declaration of this component consists of resource variables \(memory \) (initiated to 4 (Mb)) and \(75MHz_processor \) (initiated to 1). The component has two methods
\[get_map(in : src, in : dstn, out : map), \]
\[find_route(in : src, in : dstn, out : route). \]

The specifications of these methods are given respectively as
\[\{\{src, dstn, map\}, true \vdash f map' = map_for_the_area, 0 < \ell \leq 1\}, \]
\[\{\{src, dstn, route\}, true \vdash f route' = route_to_the_destination, 75MHz_processor = 1 \land memory = 4 \land 0 < \ell \leq 11\}. \]

The only other component that may use this component is Controller. The code for \(find_route(in : src, in : dstn, out : route) \) is
\[get_map(src, dstn, map); \]
\[compute(src, dstn, map, route). \]

Assume that \(compute(src, dstn, map, route) \) needs 10 seconds to perform using 4 Mb memory, and a 75 MHz processor, then this code is a refinement of the specification of \(find_route(in : src, in : dstn, out : route) \).

3. Active component \(Controller \). This component has an event \(find_route_command_arrival \), and a method \(find_route_handler \). The resource declaration of this component has variable \(75MHz_processor \) which is initiated to 1. The code for this method is
\[dstn := read_dstn; \]
\[(Schedule(Controller, GPS)||GPS.get_pos(src)); \]
\[(Schedule(Controller, RouteDB)|| RouteDB.find_route(src, dstn, route)); \]
\[display_route(dstn). \]

Time specification of this method is \(0 < \ell \leq 14 \). Assume each of \(dstn := read_dstn \) and \(display_route(dstn) \) has the time consumption less than 1 using a 75 MHz processor. We assume that the commands \(Schedule(Controller, RouteDB) \) and \(Schedule(Controller, RouteDB) \) do not take time, i.e. \(\ell = d \) (we cannot assume \(\ell = 0 \) because of our earlier assumption) is their post condition for timed specification (their precondition is given later as invariant for all three components), where \(d \) is the smallest amount of time to perform a command. It is derived directly from the sequential and parallel composition rule that the code of this method is the refinement of its specification.

A thread of this component is always \(find_route_handler \) after \(find_route_command_arrival \). □

So, in this model of component based systems we can use the Unifying Theory of Programming and additional rules for the real-time specification of designs to verify if a method is implemented properly or not. However, in order for this model to support the verification of the temporal and real-time properties, we have to give a formal meaning for threads, and a formal specification for real-time properties.

3. MODELING REAL-TIME PROPERTIES AND THREADS IN EXTENDED DURATION CALCULUS

Although the concept of timed designs defined in the previous section can be used to specify the relation between the starting state and the final state, and the execution time of a program in case it terminates, this concept is not strong enough to specify the behaviour of a program during its execution and the liveness properties such as threads of component. Especially, nonterminating programs cannot be specified as a timed design. Hence, we need a more powerful specification language which can model real-time properties and threads of component systems. In this section, we give a summary of our specification and verification techniques for real-time systems. Namely, we use Extended Duration Calculus (EDC) introduced by Zhou et al [1] as our specification language because of its simplicity and intuitivity. We will interpret (lift) all the program variables \(x \) in our component based systems as right continuous step functions of time \(x \) (note that only the typefaces are changed).

We assume that we are given a set \(M \) of real functions
and a set \mathcal{B} of Boolean functions of time that we are interested in. Note that for an n-ary relation R over \mathbf{Real}, for $f_1, \ldots, f_n \in \mathcal{M}$, $R(f_1, \ldots, f_n)$ is a Boolean function defined by $R(f_1, \ldots, f_n)(t) = \text{true}$ iff $R(f_1(t), \ldots, f_n(t)) = \text{true}$. We define real functions and boolean functions over the set \mathbf{Intv} of time intervals $\{[a, b] | a, b \in \mathbf{Real}, a \leq b\}$ as follows.

- For any real function $f \in \mathcal{M}$, $b.f$ and $e.f$, when applied to an interval, returns the value of f at the beginning and the ending points of the intervals, respectively.

- For any Boolean function $b \in \mathcal{B}$, $[b]$ is a Boolean function of intervals which is evaluated to true over an interval $[c, d]$ if $d - c > 0$ and b is interpreted as true everywhere inside $[c, d]$ (i.e. everywhere in the open interval (c, d)).

- For any Boolean function $b \in \mathcal{B}$, $[b]^0$ is a Boolean function of intervals is evaluated to true over an interval $[c, d]$ if $c = d$ (i.e. $[c, d]$ is a point interval) and $b(c) = \text{true}$. So, $[\{\text{true}\}]^0$ is satisfied by $[c, d]$ iff $[c, d]$ is a point interval.

Formulas of EDC are interpreted as a mapping from \mathbf{Intv} to $\{\text{true}, \text{false}\}$ and defined by:

1. A relation between real functions of intervals defined as above is a formula, which evaluates to true for an interval iff the values of the functions at this interval satisfy the relation.

2. A Boolean function of intervals defined as above is a formula, which evaluates to true for an interval iff the value of the function at this interval is true.

3. For formulas R_1 and R_2, $R_1 \land R_2$ is a formula which evaluates to true for a real interval $[a, b]$ iff R_1 evaluates to true for interval $[a, m]$ and R_2 evaluates to true for interval $[m, b]$ for some $a \leq m \leq b$.

4. Universal Connectives of formulas are formulas with usual semantics.

5. For a formula R, $\Diamond R$ is a formula which evaluates to true for real interval $[a, b]$ iff R evaluates to true at interval $[b, m]$ for some $m \geq b$.

We use standard abbreviation in EDC:

- $\Diamond \phi \overset{df}{=} \text{true} \land (\phi^0 \land \text{true})$ (true for all subintervals)
- $\Box \phi \overset{df}{=} \neg (\phi^0) \land \text{true}$ (true for a subintervals).

Since $[b]^0 \land [\neg b]^0 \equiv [b \land \neg b]^0$ is valid in EDC for any Boolean functions b and p, we should assume that the computation always takes time to avoid conflict, and hence, for any design $\langle \alpha, FP, FR \rangle$ we assume that $FR \Rightarrow \ell > 0$ (without this assumption, the semantics of $x := x + 1$ cannot be defined because x would have different values at a time point). The EDC semantics and the untimed EDC semantics for a design $D \equiv \langle \alpha, FP, FR \rangle$ are defined respectively as the following formulas:

$$T(D) \equiv \land_{e \in \alpha} (b, x = x \land e, x = x) \land FP \land FR \land TC(D)$$

$$UT(D) \equiv \land_{e \in \alpha} (b, x = x \land e, x = x) \land FP \land \ell > 0 \land U(TC(D))$$

Note the formula $UT(D)$ only says about the temporal order between the changes of variables, but not time constraints. These formulas are satisfied by an interval $[a, b]$ iff the design D starts at time a (ok and preconditions are satisfied at time a) and terminates at time b, $b > a$ (ok’ and post conditions are satisfied at time b). It requests for the first formula that the time consumption is $\ell = (b - a)$ and satisfies FR. $TC(D)$ and $UTC(D)$ are EDC formulas expressing the timed and untimed behaviour, respectively, of D inside the interval $[a, b]$, and is defined based on the code of D. We will not give the definition of $TC(D)$ and $UTC(D)$ here, and refer readers to [10] for the details.

Now we give formal semantics for events and threads in active components.

An event is a boolean expression b, and its occurrences should be isolated and not too frequent. So, for an b it holds that:

$$[b]^0 \land \neg b^0 \Rightarrow [\text{true}]$$

The semantics and the untimed semantics of a thread "always D follows e" are defined respectively as:

$$\Box (\exists e \equiv \Diamond, T(D))$$

which means that event e always triggers the method D.

A real-time requirement R for a component based system S is an EDC formula on the events and other features of the active components of the system S. Requirement R is verified if it is provable from the semantics of all the threads in the system provided that $SInv(C)$ holds during the time C is performing, i.e.

$$\Box (TC(C,D) \Rightarrow [SInv(C)]^0)$$

(to guarantee that the methods used in the system are implemented correctly according to the definition of components) should be derivable from the timed semantics of the system. Note that the invariants $SInv$ are used as the precondition for the scheduler only, and have nothing to do with the untimed behaviour of the system (which does not depend on the scheduler). Hence, we have the following theorem which is the easiest way to verify the condition $\Box TC(C,D) \Rightarrow [SInv(C)]^0$ holds for the timed system.

Theorem 6. If for all components C in a component based system S it is provable from the untimed EDC semantics of all threads in the system to the semantic $\Box (true) \Rightarrow SInv(C)^0$, then $\Box (true) \Rightarrow SInv(C)^0$ holds for the timed system.

In general, some assumptions from the environment are needed to ensure the schedule invariant $SInv$ for components. Those assumptions could be the frequency of the trigger events, etc.

Example: Now we illustrate how our model works via the Car Navigation System in the previous example.

The thread of active component **Controller**

- **always find_route_handler**

 after findroute_command_arrival has the EDC semantics:

$$[\text{findroute_command_arrival}]^0 \Rightarrow \Diamond, T(\text{find_route_handler})$$

Let the invariant $SInv$ for scheduler for all components C be $w_C + r_C \leq 1$, where w_C is the number of calls to a method.
in C that are waiting, and r_C is number of calls that are on processing. This invariant for a component C just says that the concurrent use of a component is not allowed, and when a component is in use by another component, then there is no other request for a service from it.

One of the requirement for the CNS is that the deadline for finding a route is 15 seconds which is specified as the following EDC formula:

$$[\text{findroute_command_arrival}]^0 \Rightarrow \diamond \, \ell \leq 15 \land [\text{display_route}(\text{dstn})]^0$$

Because

$$T(\text{findroute_handler}) \Rightarrow \ell < 14 \land [\text{display_route}(\text{dstn})],$$

the requirement is implied by the semantics of the thread, provided that $S\text{time}$ is provable from the timed semantics of the system. $S\text{time}$ is provable if we have an assumption

$$[\text{findroute_command_arrival}]^0 \Rightarrow \neg [\text{findroute_command_arrival}]^1$$

A formal proof of this would involve the proof system of EDC which is not given here. But we do believe that it can be done with the assistance of a theorem prover like PVS.

□

4. CONCLUSION AND RELATED WORK

This paper has presented a model for component-based real-time embedded systems. The model is an extension of the one for untimed systems proposed in He and Liu’s work [6] to cover the timing and resource aspects of component-based systems. There are significant differences between this model and the original one. A component in this paper is defined to carry some architectural information to support the scheduling of the concurrent use of its services as well as timing and resource constraints.

The main purpose of our model is to support the specification and refinement of components, and the verification of some real-time properties. This is especially useful for the development of safety critical systems. Our model also supports the separation between the functionality specification from the non-functionality specification of components, which can simplify the verification of the functionality requirements, and in many cases can simplify the verification of non-functional requirement as well, particularly when the real-time requirements are in the form of deadline constraints. We can give a small extension to a specification language to support our model.

With UML, one can derive a component based design and implementation. But since UML is just semi-formal, it does not support the formal verification of the system. Furthermore, even real-time UML does not support the timed design for components. Our technique is used as a complement to UML to support the timed design and the formal verification of the safety critical systems. With the separation of non-functionality and functionality during the system development, we first use UML to design an untimed system that satisfies the functionality requirements. Then, resource and time constraints are added to the untimed design of methods based on the timed sequence diagrams. After that, the specification of the scheduling for the concurrent use of services is introduced as global invariants distributed over the components. The final timed design is then verified formally against the non-functionality requirements.

In this paper, for simplicity, we have assumed a very simple way of communicating between components. The model can be extended for handling communication by introducing communication events and methods in the active component. There is still quite a lot of work to make our model more detailed. Also, there is a question if our verification and analysis techniques can be supported by any automatic tool. The answer is yes at least for the verification using a theorem prover like PVS. This will be in our future work.

We would like to mention here some work in the literatures related to this topic.

In [8, 12] a temporal logic is introduced to specify real-time properties in specification classes. Extended class diagrams and extended statechart diagrams are used together with classical UML diagrams. They also suggest to use XTG to describe the behavior of real-time systems and propose a technique to convert real-time UML with clock variables into XTG. In [3], OCL is extended to specify real-time properties. In [9], timing properties are introduced as guards for transition, statecharts can specify real-time behaviour. They propose the stereotype “SIP view” to specify the temporal order of the interaction for different customers to simplify the interactions (multiple views). This approach is similar to our specification of concurrent threads except that SIP views do not carry timing information. In [2], a temporal logic is introduced for specifying dynamic and static properties of object systems. A map to convert a large fragment of OCL to the logic is also proposed.

In [11], they propose a method to build timed models of real-time systems by adding time constraints to their application software. The applied constraints take into account execution times of atomic statements, the behavior of the systems external environment and scheduling policy. Their model can be analysed by using time analysis techniques to check relevant real-time properties. In comparison with their work, our approach is similar, but we work at the component level as well as the system level. Also, in our work, in order to increase the reusability of a component, we specify time as a relation between resource and time constraints.

Acknowledgement The author is grateful to the anonymous referees for their valuable comments that helped to improve this paper.

5. REFERENCES

[4] Dieter K. Hammer, Software Architectures and Component Technology (Editor: Mehmet Aksit),

