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Abstract

In this paper we propose a simple model for compo-
nent based real-time systems using duration automata. For
this simple model we propose an algorithm for solving the
emptiness problem using black-box testing for components
which is in the same complexity class as for solving the
emptiness problem for untimed component based systems.
Furthermore, the verification of behavioural real-time prop-
erties in this model can be done with techniques from Du-
ration Calculus.
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1. Introduction

The component-based system development supports
software reuse and compositionality, hence can reduce the
cost for the products. In component based software devel-
opment, the architectural design of the system plays a key
role in achieving the correctness of the system. Architec-
tures include not only the structure of the system but also the
behaviour and non-functional aspects of the system. Many
models for component based systems have been proposed in
the literature [5, 4]. However, those models mainly support
the system specifications and understanding, not the verifi-
cation.

Very often the embedded systems have a simple struc-
ture, but complicated real-time behaviours. The architec-
tural design for embedded systems often relies on a min-
imum specification of component interfaces only, without
accessing to the internal behaviour of components. In this
paper we propose a simple model for component based real-
time systems using duration automata. A duration automa-
ton does not have clock variable like timed automata [1],
but has a simple upper bound and lower bound for each
transition. It has been shown that many duration proper-
ties of real-time systems can be verified automatically for
this model. We define a component based real-time system

to consist of one host which is a general duration automa-
ton and several components which are duration automata
with some restrictions. Components can communicate with
their host only. For this model we propose an algorithm for
solving the emptiness problem, which plays the key role for
checking the safety of the system, using black-box testing
for components with a complexity in the same complexity
class as for solving the emptiness problem for untimed com-
ponent based systems.

2. Component Based Real-time System Model

Interface automata were introduced in [2] for specifying
component interfaces. We extend interface automata to in-
terface duration automata by associating to each action a
simple constraint on action duration in the form of time in-
terval. LetR be the set of non negative real numbers, and
Intv be the set of time intervals,Intv =̂ {[a, b] | τ1 ∈ R, τ2 ∈
R ∪ {∞}}.

Definition 1 An interface duration automaton is a tuple
M = 〈S, Σ,∆,∇, q, R, F 〉, where

1. S is a finite set of states,

2. Σ, ∆ and∇ are pairwise disjoint alphabets of internal,
input and output actions respectively,

3. q ∈ Q is initial state ofM ,

4. R ⊆ S × (Σ ∪∆ ∪ ∇)× Intv× S is timed transition
relation, and

5. F ⊆ S is set of final states.

For simplicity, for a duration interface automatonM , we
will use S(M), Σ(M), ∆(M), ∇(M), R(M), q(M) and
F (M) to denote the corresponding components ofM as in
the above definition. The untimed version ofM , denoted
by untimed(M) is the untimed automaton defined in the
same way asM except that the transition relation is defined
by untimed(R) =̂ {(s, a, s′) | (s, a, [l, u], s′) ∈ R}. Let
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A(M) =̂ Σ(M)∪∆(M)∪∇(M). A configuration ofM is
a pair(s, d) ∈ S×R. A configuration(s, d) says thatM has
been in states for d time units. So, the initial configuration
of M is (q, 0), and an acceptance configuration ofM is a
configuration(s, d) wheres ∈ F . A transition ofM is

either a time transition of the form(s, d) δ−→ (s, d + δ)
(δ ∈ R and δ ≥ 0) or a discrete transition of the form
(s, d) a−→ (s′, 0), wherea ∈ Σ∪∆∪∇, (s, a, [l, u], s′) ∈ R
andl ≤ d ≤ u. In words, a discrete transition can take place
only if the amount of time it has been enabled, i.e. staying
in the source state, satisfies the time constraint associated to
it.

Let M1, M2, . . . , Mk be duration interface automata.
They are said to be composable iff∆(Mi) ∩ ∆(Mj) =
∇(Mi)∩∇(Mj) = ∅ for all i 6= j, andΣ(Mi)∩A(Mj) = ∅
for all i 6= j. A finite set of composable duration inter-
face automataS =̂ {M1,M2, . . . , Mk} is called a (real-
time) system. The components ofS are running in parallel
and communicate with one another synchronously provided
their own time constraints are satisfied.

A configuration of systemS is a tuple C =̂
(c1, c2, . . . , ck), whereci is a configuration ofMi. The
configuration ofS in which ci is the initial configuration
of Mi for all i ≤ k, is called the initial configuration of
S. An acceptance configuration ofS is a configuration in
which ci is an acceptance configuration ofMi for all i.
For a ∈ ∪k

i=1A(Mi), let dom(a) =̂ {i | a ∈ A(Mi)}.
We combine a time transition with a following discrete
transition into one and define the transition relation ofS
as:((s1, d1), . . . , (sk, dk))

(δ,a)−→ ((s′1, d
′
1), . . . , (s

′
k, d′k)) for

δ ≥ 0 anda ∈ ∪k
i=1A(Mi) iff for all i ∈ dom(a) there is an

interval[li, ui] ∈ Intv such that(si, a, [li, ui], s′i) ∈ R(Mi),
di + δ ∈ [li, ui] and(s′i, d

′
i) = (si, 0), and if i 6∈ dom(a)

then(s′i, d
′
i) = (si, di + δ).

A path p of S is a sequence of consecutive transitions

Ci−1
(δi,ai)−→ Ci, i = 1, . . . , n. A path such thatC0 is the

initial configuration ofS is called a behaviour. We denote a

behaviour ofS by σ =̂ C0
(δ1,a1)−→ C1

(δ2,a2)−→ C2 . . .
(δn,an)−→

Cn. Let p be a pathC0
(δ1,a1)−→ C1

(δ2,a2)−→ C2 . . .
(δn,an)−→ Cn.

A configurationC is reachable fromC0 in d time units on
the pathp iff there arei andδ satisfying thati < n∧δi+1 ≥
δ ≥ 0 or i = n ∧ δ ≥ 0 such thatCi

δ−→ C and
∑i

j=1 δ =
d.

For an alphabetA, a timed string (word) overA is a se-
quencew =̂ (a1, t1)(a2, t2) . . . (ak, tk), whereai ∈ A and
ti ∈ R for i ≤ k, and0 ≤ ti ≤ ti+1 for 1 ≤ i ≤ k − 1. Let
B ⊆ A. We expand the projection.|B for strings to a pro-
jection for timed strings.|B as: for a timed stringw, w|B is
the subsequence ofw consisting of those(aj , tj) for which
aj ∈ B.

For a behaviourσ, let w(σ) be a timed word defined by
w(σ) =̂ (a1, t1)(a2, t2) . . . (an, tn), whereti =̂

∑i
j=1 δj .

w(σ) is called timed word of the systemS if the last config-
uration ofσ is an acceptance configuration ofS. Let L(S)
denote the set of timed words of the systemS.

A subsystem ofS is a subset of{M1, . . . , Mk}.
Theorem 1 Let S′ be a subsystem ofS. A timed wordw
overA(S) is a timed word ofS if and only ifw|A(S′) is a

timed word ofS′ andw|A(S−S′) is a timed word ofS− S′.

The emptiness problem for a system plays the key role
in checking the safety. From the obvious corresponding of
component systems and timed automata, it follows that the
emptiness of the set of timed words of a systemS is decid-
able, but has very high complexity.

We will see in the next section that with some restrictions
that are appropriate for modeling component based systems,
we can solve the problem with much lower complexity.

Now, we extend the system model in [3] for untimed
component based systems to model component-based real-
time systems. The advantage of this model is its simplicity
and ability of verifying some properties of a system with
not much information from the used components.

Real-time components will be modeled by duration in-
terface automata with some restrictions. The restrictions
come from the way the developers are using components.
We assume that there is a special input action “reset” which
causes the component to return to its initial state. If the
component accepts an input at a states then it is its up to
environment to decide when to send the input. Therefore
we assume that there is no time constraint for input actions,
i.e. in any input transition(s, a, [l, u], s′) satisfies thatl = 0
andu = ∞. Like for the model in [3], we also assume the
input determinism and output determinism for components
for more predictable behaviours.

Definition 2 A component is a duration automaton
X = 〈S, Σ, ∆,∇, q, R, F 〉 that satisfies the following con-
ditions:

1. Σ = ∅ andreset ∈ ∆ (no “explicit” internal action),

2. (s, a, [l, u], s′) ∈ R ∧ a ∈ ∆ impliesl = 0 ∧ u = ∞,

3. (s, reset, [0,∞), q) ∈ R for all s ∈ S,

4. ((s, a, [l, u], s′) ∈ R) ∧ (a ∈ ∇) impliesu = ∞, i.e.
when an output is ready, it can be taken at any time
afterward.

5. (input determinism) fora ∈ ∆, (s, a, [0,∞), s′) ∈ R
and(s, a, [0,∞), s′′) ∈ R implys′′ = s′,

6. (output determinism) forb ∈ ∇ and b′ ∈ ∇ ∪ (∆ \
{reset}), (s, b, [l,∞), s′) ∈ R∧(s, b′, [l′, u′], s′′) ∈ R
impliess′′ = s′, l′ = l, u′ = ∞∧ b = b′ .
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Since the final states of components play no role in our
model according to the way components are used, we as-
sume that for any componentX, we haveF (X) = S(X),
i.e. every state of a component is an acceptance state.

A host is simply a duration interface automatonM .

Definition 3 A component based real-time systemS is a
system consisting of one host and several componentsS =̂
〈M, X1, . . . , Xk〉, whereM is a host, andX1, . . . , Xk are
components satisfyingA(Xi) ∩ A(Xj) = ∅ for i 6= j, and
∆(M) ∪∇(M) = ∪k

i=1A(Xi).

Since the alphabets of components are included in the
alphabet of the host, it follows from Theorem 1 that a timed
wordw of a component based systemS is also a timed word
of the hostM .However, the statement in the reverse direc-
tion does not necessarily hold in general. We can decide
if a timed word ofM is also a timed word of the system
S by testing if we are given a limited specification of each
component ofS.

Let σ be an accepted behaviour of the hostM . The se-
quence[σ] =̂ (a1, [l1, u1]) . . . (an, [ln, un]) is called an ac-
cepted sequence of transitions ofM .

Let r be the number of states ofM , andm is the maxi-
mal number of states of componentsXj , j ≤ k. Let
untimed(S) =̂ M × untimed(X1)× . . .× untimed(Xk)
be the synchronised product of the untimed automata cor-
responding to the hostM and the componentsXj ’s. The
number of states ofuntimed(S) is bounded byr ∗mk, and
from the definition of the synchronised products it follows
that each transition inuntimed(S) is a parallel execution
of a communication transition inM and a transition in a
component with the same label, or an internal transition in
M .

We have the following criterion for the emptiness of real-
time component based systems in our model. LetP be the
length of the longest path (number of transitions) from the
initial state to an acceptance state ofM in which any cycle
is not repeated more thanr ∗ mk times for each time it is
entered.

Theorem 2 The set of timed words of the real-time com-
ponent based systemS is not empty if and only if there is
an accepted sequence of transitions of the hostM [σ] =
(a1, [l1, u1]) . . . (an, [ln, un]) with the lengthn ≤ P such
that for its corresponding untimed wordw =̂ a1a2 . . . an

the word w|A(Xi) is accepted byuntimed(Xi) for all
i ≤ k and for all j = 1, . . . , n, if aj ∈ ∇(Xi) for some
i then eitheruj + . . . + uh+1 ≥ dj or there is a positive
cycle on the path fromh + 1 to j − 1 with the length not
greater thanr ∗mk, whereh is the largest index less than

j such thatah ∈ A(Xi), andq(Xi)
a1...ah|A(Xi)−→ s′ holds in

the automatonuntimed(Xi), anddj is the minimum delay

of the unique output action ofXi at states′ with labelaj ,
i.e. (s′, aj , [dj ,∞), s′′) ∈ R(Xi).

Hence, a more efficient algorithm for deciding the empti-
ness of a component based real-time system than the gen-
eral algorithm for timed automata can be constructed by
searching for an acceptance sequence of the hostM with
the length not longer thanP that satisfies the conditions of
Theorem 2. Note that these conditions can be verified by
black box testing as presented in the next subsection.

3. Model-Checking Component Based Systems
with Black-box Testing

A component is regarded as a black box, and its
behaviour can only be determined by observing its in-
put/output sequence with a clock. We assume that when
the output action is tested, the lower bound for the delay of
the transition is also reported in the result. Our assumptions
for black box testing real-time componentX are:
(a) WheneverX is sent an input symbol in∆(X), it imme-
diately outputs a special symbol (not in∇) “yes” or “no” to
indicate whether the input is accepted or not.
(b) X has a special input symbol (not in∆(X)) “prob”
that always makesX, when its current state iss, execute
a unique output transition(s, b, [d,∞), s′) if such action
exists (i.e. b and d are observable), and “no” if other-
wise. So, send(X,”prob”) returns “no” if output transition
(s, b, [d,∞), s′) does not exist, and(b, d) otherwise.

The following algorithm describes our black box testing
procedure. LetX be a component,w ∈ A(X)∗, let wj

denote thejth element ofw. We also assume that a vari-
abledX records the value of the minimal delayd of the last
output symbolb in w when the black box test onw is suc-
cessful (dX is introduced just for serving the purpose of the
algorithm for checking the emptiness of component based
system presented below).

BlackboxTest(X,w)
send “reset” to X;
for (j := 0, j < |w|, j + +)

if wj is an input symbol
if send(X,wj) = “no” return “no”;

if wj is an output symbol
if send(X,”prob”) = (b, d)

if wj 6= b return “no”;
if wj = b dX := d;

if send(X,”prob”) = “no” return “no”;
return “yes”

The emptiness of a component based real-time system in
our model can be solved by the the following testing pro-
cedure. Let for a sequence of transitionw, label(w) denote
the sequence of the labels corresponding to the sequencew.
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Input: Component based systemS =̂ 〈M,X1, . . . , Xk〉
Output: “Yes” if the set of the timed words ofS is not

empty, “No” otherwise.

Method:

(1) ComputeP , the length of the longest path (number
of transitions) from the initial state to an acceptance
state ofM in which any cycle is not repeated more
thanr ∗mk times for each time it is entered, by using
a searching technique in the graph ofM .
(2) Generate all acceptance sequences of transitions of
M with lengthP in a systematic way (e.g. by breadth
first searching);
(3) Checking on-the-fly whether any prefix of a gener-
ated sequence satisfies the conditions of Theorem 2.
This can be done by:
(i) For each prefix of a generated sequence
w = e1e2 . . . en, for each i ≤ n let
ei = (si−1, aj , [li, ui], si). For j ≤ k let mj(w) be
the largest index ofw such thatamj

∈ A(Xj) if it
exists, otherwise, letmj(w) = 0. Let deadlinej(w)
be

∑n
h=mj+1 uh (mj(w) and deadlinej(w) can be

maintained properly).
(ii) If the labela of en+1 belongs to∆(Xj), then if
BlackboxTest(Xj , label(w)|A(Xj)) = “no”, wen+1

does not satisfy the conditions of Theorem 2. Oth-
erwise, updatew := wen+1, mj(w) := n + 1,
deadlinej(w) := 0.
(iii) If the label a of en+1 belongs to∇(Xj).
If BlackboxTest(Xj , label(w)|A(Xj)) = “yes”, let d
be the value ofdXj .
(a) If deadlinej(w) + un+1 < d: Verify if there is a
positive allowable cyclic path betweenmj(w) + 1 and
n. If such path does not exit, thenwen+1 does not sat-
isfy the conditions of Theorem 2. Otherwise, update
w := wen+1, mj(w) := n + 1, deadlinej(w) := 0.
(b) If deadlinej(w) + un+1 ≥ d: The conditions
of Theorem 2 are satisfied; updatew := wen+1,
mj(w) := n + 1,
deadlinej(w) := 0, deadlinej′(w) :=
deadlinej′(w) + un+1 for j′ 6= j.

If BlackboxTest(Xj , label(w)|A(Xj)) = “no”, the
conditions of Theorem 2 are not satisfied. (iv) If the la-
bel a of en+1 does not belong to∪j≤kA(Xj), update
w := wen+1, deadlinej(w) := deadlinej(w)+un+1

for j ≤ k.

(4) If a generated sequence satisfying the conditions of
Theorem 2 is found, returns with “Yes”. Otherwise,
return with “No”.

The time complexity for the worst cases of this algorithm
is of O(P 2 ∗ |A(S)|P+1), where|A(S)| is the size of the al-

phabet of the systemS. This time complexity does not de-
pend on the size of the constants occurring in the constraints
for the transitions.

It is well-known that the reachability and safety problem
can be reduced to the emptiness problem, and hence can be
solved with the technique in the previous section. LetS =̂
〈M, X1, . . . , Xk〉 be a component based real-time system.
Let Badbe a subset of the state set ofM . We have to check
if states inBad are not reachable. LetM ′ be M with the
set of final states being replaced byBad. States inBadare
not reachable inS iff the set of timed words of the system
S′ = 〈M ′, X1, . . . , Xk〉 is empty.

The hostM of a systemS =̂ 〈M,X1, . . . , Xk〉 is de-
signed to satisfy some real-time requirements. BecauseM
is just a duration interface automaton, it is much easier to
verify if M satisfies a real-time property than to do it for
a timed automaton. In order to achieve its functionality,
M uses services from componentsXj , j ≤ k. However,
if the time performance ofXj is low, thenS may not be
implementable. Therefore, the emptiness testing algorithm
presented above can be used to decide whether the time per-
formance ofXj ’s is acceptable forS.

4. Conclusion

We have presented a model for component-based real-
time systems which has some advantages over the models
in the literature. The main advantage is that it supports the
black box testing for checking the emptiness with nearly the
same cost as for untimed component-based systems. Actu-
ally, from the simplicity of the proposed architecture of sys-
tems we can have a lower complexity, but this would need a
more complicated analysis. We also propose a simple tech-
nique for the verification of Real-time properties written as
a formula in some real-time logic for our model. We believe
that although our model is simple, it is good for the mod-
elling and verification of many embedded real-time systems
in practice.
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