Maps and Dictionaries

Data structures and Algorithms

Acknowledgement:
These slides are adapted from slides provided with Data Structures and Algorithms in C++
Goodrich, Tamassia and Mount (Wiley, 2004)
Outline

Maps (9.1)
Hash tables (9.2)
Dictionaries (9.3)
Maps & Dictionaries

Map ADT and Dictionary ADT:
- model a searchable collection of key-value entries
- main operations are searching, inserting, and deleting entries

Map: multiple entries with the same key are **not** allowed

Map applications:
- address book
- student-record database

Dictionary: multiple entries with the same key are **allowed**

Dictionary applications:
- word-definition pairs
- credit card authorizations
- DNS mapping of host names (e.g., datastructures.net) to internet IP addresses (e.g., 128.148.34.101)
Maps
The Map ADT

Map ADT methods:

- **get(k)**: if the map M has an entry with key k, return its associated value; else, return null
- **put(k, v)**: insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
- **remove(k)**: if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- **size()**, **isEmpty()**
- **keys()**: return an iterator of the keys in M
- **values()**: return an iterator of the values in M
Example

<table>
<thead>
<tr>
<th>Operation</th>
<th>Output</th>
<th>Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>isEmpty()</td>
<td>true</td>
<td>\emptyset</td>
</tr>
<tr>
<td>put(5, A)</td>
<td>null</td>
<td>(5, A)</td>
</tr>
<tr>
<td>put(7, B)</td>
<td>null</td>
<td>(5, A), (7, B)</td>
</tr>
<tr>
<td>put(2, C)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C)</td>
</tr>
<tr>
<td>put(8, D)</td>
<td>null</td>
<td>(5, A), (7, B), (2, C), (8, D)</td>
</tr>
<tr>
<td>put(2, E)</td>
<td>C</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>get(7)</td>
<td>B</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>get(4)</td>
<td>null</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>E</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>size()</td>
<td>4</td>
<td>(5, A), (7, B), (2, E), (8, D)</td>
</tr>
<tr>
<td>remove(5)</td>
<td>A</td>
<td>(5, A), (7, B), (8, D)</td>
</tr>
<tr>
<td>remove(2)</td>
<td>E</td>
<td>(7, B), (8, D)</td>
</tr>
<tr>
<td>get(2)</td>
<td>null</td>
<td>(7, B), (8, D)</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>false</td>
<td>(7, B), (8, D)</td>
</tr>
</tbody>
</table>
#include <iostream>
#include <map>
#include <string>
using namespace std;

typedef map<string, string> TStrStrMap;
typedef pair<string, string> TStrStrPair;

int main(int argc, char *argv[]) {
 TStrStrMap tMap;

 tMap.insert(TStrStrPair("yes", "no"));
 tMap.insert(TStrStrPair("up", "down"));
 tMap.insert(TStrStrPair("left", "right"));
 tMap.insert(TStrStrPair("good", "bad"));

 string key;
 cout << "Enter word: " << endl;
 cin >> key;
}

http://kengine.sourceforge.net/tutorial/g/stdmap-eng.htm
string strValue = tMap[key];
if(strValue!="")
 cout << "Opposite: " << strValue << endl; // Show value
else
{
 TStrStrMap::iterator p;
 bool bFound=false;
 // Show key
 for(p = tMap.begin(); p!=tMap.end(); ++p) {
 string strKey= p->second;
 if(key == strKey) {
 // Return key
 std::cout << "Opposite: " << p->first << std::endl;
 bFound = true;
 }
 }
 if(!bFound) // If not found opposite word
 cout << "Word not in map." << endl;
}
return 0;
Dictionary ADT

The dictionary ADT models a searchable collection of key-value entries: ordered and unordered.

The main operations of a dictionary are searching, inserting, and deleting items.

Multiple items with the same key **are** allowed.

Applications:
- word-definition pairs
- credit card authorizations
- DNS mapping of host names (e.g., datastructures.net) to internet IP addresses (e.g., 128.148.34.101)

Dictionary ADT methods:
- **find**\((k)\): if the dictionary has an entry with key \(k\), returns it, else, returns null
- **findAll**\((k)\): returns an iterator of all entries with key \(k\)
- **insert**\((k, o)\): inserts and returns the entry \((k, o)\)
- **remove**\((e)\): remove the entry \(e\) from the dictionary
- **entries**(): returns an iterator of the entries in the dictionary
- **size()**, **isEmpty()**
Example

### Operation	Output	Dictionary
insert(5, A) | (5, A) | (5, A)
insert(7, B) | (7, B) | (5, A), (7, B)
insert(2, C) | (2, C) | (5, A), (7, B), (2, C)
insert(8, D) | (8, D) | (5, A), (7, B), (2, C), (8, D)
insert(2, E) | (2, E) | (5, A), (7, B), (2, C), (8, D), (2, E)
find(7) | (7, B) | (5, A), (7, B), (2, C), (8, D), (2, E)
find(4) | null | (5, A), (7, B), (2, C), (8, D), (2, E)
find(2) | (2, C) | (5, A), (7, B), (2, C), (8, D), (2, E)
findAll(2) | (2, C), (2, E) | (5, A), (7, B), (2, C), (8, D), (2, E)
size() | 5 | (5, A), (7, B), (2, C), (8, D), (2, E)
remove(find(5)) | (5, A) | (7, B), (2, C), (8, D), (2, E)
find(5) | null | (7, B), (2, C), (8, D), (2, E)
Implement Dictionary ADT

- Unordered dictionary
 - List-based dictionary
 - Hash table
- Ordered dictionary
 - Array-based dictionary – search table
 - Skip list
Hash Tables

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ϕ</td>
<td></td>
<td></td>
<td>451-229-0004</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>025-612-0001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>981-101-0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ϕ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
Hash table

- Expected time of search, put: $O(1)$
- Bucket array
- Hash function
A hash function h maps keys of a given type to integers in a fixed interval $[0, N - 1]$
- Example: $h(x) = x \mod N$
 is a hash function for integer keys
- The integer $h(x)$ is called the hash value of key x

A hash table for a given key type consists of
- Hash function h
- Array (called table) of size N

When implementing a map with a hash table, the goal is to store item (k, o) at index $i = h(x)$
Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer.
- Our hash table uses an array of size $N = 10,000$ and the hash function $h(x) = \text{last four digits of } x$.

The diagram shows the hash table with entries for SSNs such as 025-612-0001, 981-101-0002, 451-229-0004, etc.
Hash Functions

- A hash function is usually specified as the composition of two functions:
 - **Hash code:** h_1: keys \rightarrow integers
 - **Compression function:** h_2: integers $\rightarrow [0, N - 1]$

- The hash code map is applied first, and the compression map is applied next on the result, i.e.,
 $$h(x) = h_2(h_1(x))$$

- The goal of the hash function is to “disperse” the keys in an apparently random way
 - minimize collisions
Hash Codes

Memory address:
- We reinterpret the memory address of the key object as an integer
- Good in general, except for numeric and string keys (same key should have the same hash code)

Integer cast:
- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in C/C++)

Component sum:
- We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double)
Hash Codes (cont.)

- **Polynomial accumulation:**
 - Order is important
 - We partition the bits of the key into a sequence of components of fixed length (e.g., 8, 16 or 32 bits)
 \[a_0 a_1 \ldots a_{n-1} \]
 - We evaluate the polynomial
 \[p(z) = a_{n-1} + a_{n-2}z + a_{n-3}z^2 + \ldots + a_0z^{n-1} \]
 at a fixed value \(z \), ignoring overflows
 - Especially suitable for strings (e.g., the choice \(z = 33 \) gives at most 6 collisions on a set of 50,000 English words)

- **Polynomial \(p(z) \) can be evaluated in \(O(n) \) time using Horner’s rule:**
 - The following polynomials are successively computed, each from the previous one in \(O(1) \) time
 \[p_0(z) = a_{n-1} \]
 \[p_i(z) = a_{n-i-1} + zp_{i-1}(z) \quad (i = 1, 2, \ldots, n-1) \]
 - We have \(p(z) = p_{n-1}(z) \)
Compression Functions

Division:
- $h_2(y) = y \mod N$
- The size N of the hash table is usually chosen to be a prime
 - Reason: reduce collisions
 - How: number theory and is beyond the scope of this course

Multiply, Add and Divide (MAD):
- $h_2(y) = (ay + b) \mod N$
- N is prime, a and b are nonnegative integers such that $a \mod N \neq 0$
 Otherwise, every integer would map to the same value b
Collision Handling

Collisions occur when different elements are mapped to the same cell

Ways to handle collisions
- Separate chaining
- Linear probing
- Double hashing

Separate chaining

<table>
<thead>
<tr>
<th>0</th>
<th>Ø</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>025-612-0001</td>
</tr>
<tr>
<td>2</td>
<td>Ø</td>
</tr>
<tr>
<td>3</td>
<td>Ø</td>
</tr>
<tr>
<td>4</td>
<td>451-229-0004-981-101-0004</td>
</tr>
</tbody>
</table>

Maps and Dictionaries 20
Separate chaining

- We let each cell in the table point to a linked list of entries that map there.
- Load factor: n/N < 1
- Separate chaining is simple, but requires additional memory outside the table.

Example:
- Assume you have a hash table H with N=9 slots (H[0,8]) and let the hash function be h(k) = k mod N.
- Demonstrate (by picture) the insertion of the following keys into a hash table with collisions resolved by chaining.
 - 5, 28, 19, 15, 20, 33, 12, 17, 10
Map Methods with Separate Chaining used for Collisions

Delegate operations to a list-based map at each cell:

Algorithm get(k):
Output: The value associated with the key k in the map, or null if there is no entry with key equal to k in the map
return $A[h(k)].get(k)$ {delegate the get to the list-based map at $A[h(k)]$}

Algorithm put(k,v):
Output: If there is an existing entry in our map with key equal to k, then we return its value (replacing it with v); otherwise, we return null
$t = A[h(k)].put(k,v)$ {delegate the put to the list-based map at $A[h(k)]$}
if $t = \text{null}$ then $\{k$ is a new key$\}$
n = n + 1
return t

Algorithm remove(k):
Output: The (removed) value associated with key k in the map, or null if there is no entry with key equal to k in the map
$t = A[h(k)].remove(k)$ {delegate the remove to the list-based map at $A[h(k)]$}
if $t \neq \text{null}$ then $\{k$ was found$\}$
n = n - 1
return t
Linear Probing

- **Open addressing**: the colliding item is placed in a different cell of the table.
- **Linear probing** handles collisions by placing the colliding item in the next (circularly) available table cell.
- Each table cell inspected is referred to as a “probe”.
- Colliding items lump together, causing future collisions to cause a longer sequence of probes.

Example:
- \(h(x) = x \mod 13 \)
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order.
Search with Linear Probing

Consider a hash table A that uses linear probing

get(k)
- We start at cell $h(k)$
- We probe consecutive locations until one of the following occurs
 - An item with key k is found, or
 - An empty cell is found, or
 - N cells have been unsuccessfully probed

Algorithm get(k)

```plaintext
i ← h(k)
p ← 0
repeat
  c ← A[i]
  if c = ∅
    return null
  else if c.key () = k
    return c.element()
  else
    i ← (i + 1) mod N
    p ← p + 1
  until p = N
return null
```
Updates with Linear Probing

- **To handle insertions and deletions,** we introduce a special object, called AVAILABLE, which replaces deleted elements

- **remove**(*k*)
 - We search for an entry with key *k*
 - If such an entry (*k, o*) is found, we replace it with the special item AVAILABLE and we return element *o*
 - Else, we return null

- **put**(*k, o*)
 - We throw an exception if the table is full
 - We start at cell *h(k)*
 - We probe consecutive cells until one of the following occurs
 - A cell *i* is found that is either empty or stores AVAILABLE, or
 - *N* cells have been unsuccessfully probed
 - We store entry (*k, o*) in cell *i*
Double Hashing

Double hashing uses a secondary hash function \(d(k) \) and handles collisions by placing an item in the first available cell of the series

\[
h(k,i) = (h(k) + i \cdot d(k)) \mod N
\]

for \(i = 0, 1, \ldots, N - 1 \)

The secondary hash function \(d(k) \) cannot have zero values

The table size \(N \) must be a prime to allow probing of all the cells

Common choice of compression function for the secondary hash function:

\[
d_2(k) = q - (k \mod q)
\]

where

- \(q < N \)
- \(q \) is a prime

The possible values for \(d_2(k) \) are

\(1, 2, \ldots, q \)
Consider a hash table storing integer keys that handles collision with double hashing

- $N = 13$
- $h(k) = k \mod 13$
- $d(k) = 7 - k \mod 7$

Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order
Performance of Hashing

- In the worst case, searches, insertions and removals on a hash table take $O(n)$ time.
- The worst case occurs when all the keys inserted into the map collide.
- The load factor $\alpha = n/N$ affects the performance of a hash table.
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is $1 / (1 - \alpha)$.
- The expected running time of all the dictionary ADT operations in a hash table is $O(1)$.
- In practice, hashing is very fast provided the load factor is not close to 100%.
- Applications of hash tables:
 - small databases
 - compilers
 - browser caches
- Open addressing is not faster than chaining method if space is an issue.
Hash Table Implementation of Dictionary ADT

- Unordered dictionaries.
- We can also create a hash-table dictionary implementation.
- If we use separate chaining to handle collisions, then each operation can be delegated to a list-based dictionary stored at each hash table cell.