1. Write a program named Power.cpp to compute the power function \(p(x, n) \) defined as \(p(x, n) = x^n \) \((n: \text{non-negative integer}) \) so that the running time for the computation of the power function is \(O(\log n) \).

2. Write a program named MaxMin.cpp to describe a method for finding both the minimum and maximum of \(n \) integers using fewer than \(3n/2 \) comparisons.

3. Suppose that each row of an \(n \times n \) array \(A \) consists of 1’s and 0’s such that, in any row of \(A \) all the 1’s come before any 0’s in that row. Assuming \(A \) is already in memory, write a program named FastFind.cpp to describe a method running in \(O(n) \) time for finding the row of \(A \) that contains the most 1’s.